mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update eend_ola
This commit is contained in:
parent
c46a271415
commit
91425c670b
@ -12,7 +12,7 @@ encoder_decoder_attractor_conf:
|
||||
n_units: 256
|
||||
|
||||
# model related
|
||||
model: eend_ola_similar_eend
|
||||
model: eend_ola
|
||||
model_conf:
|
||||
attractor_loss_weight: 0.01
|
||||
max_n_speaker: 8
|
||||
|
||||
@ -12,7 +12,7 @@ encoder_decoder_attractor_conf:
|
||||
n_units: 256
|
||||
|
||||
# model related
|
||||
model: eend_ola_similar_eend
|
||||
model: eend_ola
|
||||
model_conf:
|
||||
max_n_speaker: 8
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@ encoder_decoder_attractor_conf:
|
||||
n_units: 256
|
||||
|
||||
# model related
|
||||
model: eend_ola_similar_eend
|
||||
model: eend_ola
|
||||
model_conf:
|
||||
max_n_speaker: 8
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@ encoder_decoder_attractor_conf:
|
||||
n_units: 256
|
||||
|
||||
# model related
|
||||
model: eend_ola_similar_eend
|
||||
model: eend_ola
|
||||
model_conf:
|
||||
max_n_speaker: 8
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@ from funasr.models.base_model import FunASRModel
|
||||
from funasr.models.frontend.wav_frontend import WavFrontendMel23
|
||||
from funasr.modules.eend_ola.encoder import EENDOLATransformerEncoder
|
||||
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
|
||||
from funasr.modules.eend_ola.utils.losses import fast_batch_pit_n_speaker_loss, standard_loss, cal_power_loss
|
||||
from funasr.modules.eend_ola.utils.losses import standard_loss, cal_power_loss, fast_batch_pit_n_speaker_loss
|
||||
from funasr.modules.eend_ola.utils.power import create_powerlabel
|
||||
from funasr.modules.eend_ola.utils.power import generate_mapping_dict
|
||||
from funasr.torch_utils.device_funcs import force_gatherable
|
||||
@ -109,23 +109,17 @@ class DiarEENDOLAModel(FunASRModel):
|
||||
def forward(
|
||||
self,
|
||||
speech: List[torch.Tensor],
|
||||
speech_lengths: torch.Tensor, # num_frames of each sample
|
||||
speaker_labels: List[torch.Tensor],
|
||||
speaker_labels_lengths: torch.Tensor, # num_speakers of each sample
|
||||
orders: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||||
|
||||
# Check that batch_size is unified
|
||||
assert (
|
||||
len(speech)
|
||||
== len(speech_lengths)
|
||||
== len(speaker_labels)
|
||||
== len(speaker_labels_lengths)
|
||||
), (len(speech), len(speech_lengths), len(speaker_labels), len(speaker_labels_lengths))
|
||||
assert (len(speech) == len(speaker_labels)), (len(speech), len(speaker_labels))
|
||||
speech_lengths = torch.tensor([len(sph) for sph in speech]).to(torch.int64)
|
||||
speaker_labels_lengths = torch.tensor([spk.shape[-1] for spk in speaker_labels]).to(torch.int64)
|
||||
batch_size = len(speech)
|
||||
|
||||
# Encoder
|
||||
speech = [s[:s_len] for s, s_len in zip(speech, speech_lengths)]
|
||||
encoder_out = self.forward_encoder(speech, speech_lengths)
|
||||
|
||||
# Encoder-decoder attractor
|
||||
|
||||
Loading…
Reference in New Issue
Block a user