mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
fix vad results bug
This commit is contained in:
parent
41b1d35048
commit
91027ddab4
@ -0,0 +1,24 @@
|
|||||||
|
# ModelScope Model
|
||||||
|
|
||||||
|
## How to finetune and infer using a pretrained ModelScope Model
|
||||||
|
|
||||||
|
### Inference
|
||||||
|
|
||||||
|
Or you can use the finetuned model for inference directly.
|
||||||
|
|
||||||
|
- Setting parameters in `infer.py`
|
||||||
|
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
|
||||||
|
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
|
||||||
|
|
||||||
|
- Then you can run the pipeline to infer with:
|
||||||
|
```python
|
||||||
|
python infer.py
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
Modify inference related parameters in vad.yaml.
|
||||||
|
|
||||||
|
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
|
||||||
|
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
|
||||||
|
- The value tends to -1, the greater probability of noise being judged as speech
|
||||||
|
- The value tends to 1, the greater probability of speech being judged as noise
|
||||||
15
egs_modelscope/vad/speech_fsmn_vad_zh-cn-16k-common/infer.py
Normal file
15
egs_modelscope/vad/speech_fsmn_vad_zh-cn-16k-common/infer.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
from modelscope.pipelines import pipeline
|
||||||
|
from modelscope.utils.constant import Tasks
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav'
|
||||||
|
output_dir = None
|
||||||
|
inference_pipline = pipeline(
|
||||||
|
task=Tasks.voice_activity_detection,
|
||||||
|
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
|
||||||
|
model_revision=None,
|
||||||
|
output_dir=output_dir,
|
||||||
|
batch_size=1,
|
||||||
|
)
|
||||||
|
segments_result = inference_pipline(audio_in=audio_in)
|
||||||
|
print(segments_result)
|
||||||
24
egs_modelscope/vad/speech_fsmn_vad_zh-cn-8k-common/README.md
Normal file
24
egs_modelscope/vad/speech_fsmn_vad_zh-cn-8k-common/README.md
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
# ModelScope Model
|
||||||
|
|
||||||
|
## How to finetune and infer using a pretrained ModelScope Model
|
||||||
|
|
||||||
|
### Inference
|
||||||
|
|
||||||
|
Or you can use the finetuned model for inference directly.
|
||||||
|
|
||||||
|
- Setting parameters in `infer.py`
|
||||||
|
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
|
||||||
|
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
|
||||||
|
|
||||||
|
- Then you can run the pipeline to infer with:
|
||||||
|
```python
|
||||||
|
python infer.py
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
Modify inference related parameters in vad.yaml.
|
||||||
|
|
||||||
|
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
|
||||||
|
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
|
||||||
|
- The value tends to -1, the greater probability of noise being judged as speech
|
||||||
|
- The value tends to 1, the greater probability of speech being judged as noise
|
||||||
15
egs_modelscope/vad/speech_fsmn_vad_zh-cn-8k-common/infer.py
Normal file
15
egs_modelscope/vad/speech_fsmn_vad_zh-cn-8k-common/infer.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
from modelscope.pipelines import pipeline
|
||||||
|
from modelscope.utils.constant import Tasks
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example_8k.wav'
|
||||||
|
output_dir = None
|
||||||
|
inference_pipline = pipeline(
|
||||||
|
task=Tasks.voice_activity_detection,
|
||||||
|
model="damo/speech_fsmn_vad_zh-cn-8k-common",
|
||||||
|
model_revision='v1.1.1',
|
||||||
|
output_dir='./output_dir',
|
||||||
|
batch_size=1,
|
||||||
|
)
|
||||||
|
segments_result = inference_pipline(audio_in=audio_in)
|
||||||
|
print(segments_result)
|
||||||
@ -81,6 +81,7 @@ class Speech2VadSegment:
|
|||||||
self.device = device
|
self.device = device
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
self.frontend = frontend
|
self.frontend = frontend
|
||||||
|
self.batch_size = batch_size
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def __call__(
|
def __call__(
|
||||||
@ -110,10 +111,9 @@ class Speech2VadSegment:
|
|||||||
# segments = self.vad_model(**batch)
|
# segments = self.vad_model(**batch)
|
||||||
|
|
||||||
# b. Forward Encoder sreaming
|
# b. Forward Encoder sreaming
|
||||||
segments = []
|
|
||||||
segments_tmp = []
|
|
||||||
step = 6000
|
|
||||||
t_offset = 0
|
t_offset = 0
|
||||||
|
step = min(feats_len, 6000)
|
||||||
|
segments = [[]] * self.batch_size
|
||||||
for t_offset in range(0, feats_len, min(step, feats_len - t_offset)):
|
for t_offset in range(0, feats_len, min(step, feats_len - t_offset)):
|
||||||
if t_offset + step >= feats_len - 1:
|
if t_offset + step >= feats_len - 1:
|
||||||
step = feats_len - t_offset
|
step = feats_len - t_offset
|
||||||
@ -129,8 +129,8 @@ class Speech2VadSegment:
|
|||||||
batch = to_device(batch, device=self.device)
|
batch = to_device(batch, device=self.device)
|
||||||
segments_part = self.vad_model(**batch)
|
segments_part = self.vad_model(**batch)
|
||||||
if segments_part:
|
if segments_part:
|
||||||
segments_tmp += segments_part[0]
|
for batch_num in range(0, self.batch_size):
|
||||||
segments.append(segments_tmp)
|
segments[batch_num] += segments_part[batch_num]
|
||||||
return segments
|
return segments
|
||||||
|
|
||||||
|
|
||||||
@ -254,7 +254,6 @@ def inference_modelscope(
|
|||||||
assert all(isinstance(s, str) for s in keys), keys
|
assert all(isinstance(s, str) for s in keys), keys
|
||||||
_bs = len(next(iter(batch.values())))
|
_bs = len(next(iter(batch.values())))
|
||||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||||
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
|
||||||
|
|
||||||
# do vad segment
|
# do vad segment
|
||||||
results = speech2vadsegment(**batch)
|
results = speech2vadsegment(**batch)
|
||||||
|
|||||||
@ -192,7 +192,7 @@ class WindowDetector(object):
|
|||||||
|
|
||||||
|
|
||||||
class E2EVadModel(nn.Module):
|
class E2EVadModel(nn.Module):
|
||||||
def __init__(self, encoder: FSMN, vad_post_args: Dict[str, Any], streaming=False):
|
def __init__(self, encoder: FSMN, vad_post_args: Dict[str, Any]):
|
||||||
super(E2EVadModel, self).__init__()
|
super(E2EVadModel, self).__init__()
|
||||||
self.vad_opts = VADXOptions(**vad_post_args)
|
self.vad_opts = VADXOptions(**vad_post_args)
|
||||||
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
||||||
@ -227,7 +227,6 @@ class E2EVadModel(nn.Module):
|
|||||||
self.data_buf = None
|
self.data_buf = None
|
||||||
self.data_buf_all = None
|
self.data_buf_all = None
|
||||||
self.waveform = None
|
self.waveform = None
|
||||||
self.streaming = streaming
|
|
||||||
self.ResetDetection()
|
self.ResetDetection()
|
||||||
|
|
||||||
def AllResetDetection(self):
|
def AllResetDetection(self):
|
||||||
@ -451,11 +450,7 @@ class E2EVadModel(nn.Module):
|
|||||||
if not is_final_send:
|
if not is_final_send:
|
||||||
self.DetectCommonFrames()
|
self.DetectCommonFrames()
|
||||||
else:
|
else:
|
||||||
if self.streaming:
|
self.DetectLastFrames()
|
||||||
self.DetectLastFrames()
|
|
||||||
else:
|
|
||||||
self.AllResetDetection()
|
|
||||||
self.DetectAllFrames() # offline decode and is_final_send == True
|
|
||||||
segments = []
|
segments = []
|
||||||
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
|
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
|
||||||
segment_batch = []
|
segment_batch = []
|
||||||
@ -468,7 +463,8 @@ class E2EVadModel(nn.Module):
|
|||||||
self.output_data_buf_offset += 1 # need update this parameter
|
self.output_data_buf_offset += 1 # need update this parameter
|
||||||
if segment_batch:
|
if segment_batch:
|
||||||
segments.append(segment_batch)
|
segments.append(segment_batch)
|
||||||
|
if is_final_send:
|
||||||
|
self.AllResetDetection()
|
||||||
return segments
|
return segments
|
||||||
|
|
||||||
def DetectCommonFrames(self) -> int:
|
def DetectCommonFrames(self) -> int:
|
||||||
@ -494,18 +490,6 @@ class E2EVadModel(nn.Module):
|
|||||||
|
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
def DetectAllFrames(self) -> int:
|
|
||||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
|
||||||
return 0
|
|
||||||
if self.vad_opts.nn_eval_block_size != self.vad_opts.dcd_block_size:
|
|
||||||
frame_state = FrameState.kFrameStateInvalid
|
|
||||||
for t in range(0, self.frm_cnt):
|
|
||||||
frame_state = self.GetFrameState(t)
|
|
||||||
self.DetectOneFrame(frame_state, t, t == self.frm_cnt - 1)
|
|
||||||
else:
|
|
||||||
pass
|
|
||||||
return 0
|
|
||||||
|
|
||||||
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
|
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
|
||||||
tmp_cur_frm_state = FrameState.kFrameStateInvalid
|
tmp_cur_frm_state = FrameState.kFrameStateInvalid
|
||||||
if cur_frm_state == FrameState.kFrameStateSpeech:
|
if cur_frm_state == FrameState.kFrameStateSpeech:
|
||||||
|
|||||||
@ -291,8 +291,7 @@ class VADTask(AbsTask):
|
|||||||
model_class = model_choices.get_class(args.model)
|
model_class = model_choices.get_class(args.model)
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
model_class = model_choices.get_class("e2evad")
|
model_class = model_choices.get_class("e2evad")
|
||||||
model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf,
|
model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf)
|
||||||
streaming=args.encoder_conf.get('streaming', False))
|
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user