fix vad results bug

This commit is contained in:
凌匀 2023-02-16 22:11:18 +08:00
parent 41b1d35048
commit 91027ddab4
7 changed files with 88 additions and 28 deletions

View File

@ -0,0 +1,24 @@
# ModelScope Model
## How to finetune and infer using a pretrained ModelScope Model
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```
Modify inference related parameters in vad.yaml.
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
- The value tends to -1, the greater probability of noise being judged as speech
- The value tends to 1, the greater probability of speech being judged as noise

View File

@ -0,0 +1,15 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.voice_activity_detection,
model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
model_revision=None,
output_dir=output_dir,
batch_size=1,
)
segments_result = inference_pipline(audio_in=audio_in)
print(segments_result)

View File

@ -0,0 +1,24 @@
# ModelScope Model
## How to finetune and infer using a pretrained ModelScope Model
### Inference
Or you can use the finetuned model for inference directly.
- Setting parameters in `infer.py`
- <strong>audio_in:</strong> # support wav, url, bytes, and parsed audio format.
- <strong>output_dir:</strong> # If the input format is wav.scp, it needs to be set.
- Then you can run the pipeline to infer with:
```python
python infer.py
```
Modify inference related parameters in vad.yaml.
- max_end_silence_time: The end-point silence duration to judge the end of sentence, the parameter range is 500ms~6000ms, and the default value is 800ms
- speech_noise_thres: The balance of speech and silence scores, the parameter range is (-1,1)
- The value tends to -1, the greater probability of noise being judged as speech
- The value tends to 1, the greater probability of speech being judged as noise

View File

@ -0,0 +1,15 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
audio_in = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example_8k.wav'
output_dir = None
inference_pipline = pipeline(
task=Tasks.voice_activity_detection,
model="damo/speech_fsmn_vad_zh-cn-8k-common",
model_revision='v1.1.1',
output_dir='./output_dir',
batch_size=1,
)
segments_result = inference_pipline(audio_in=audio_in)
print(segments_result)

View File

@ -81,6 +81,7 @@ class Speech2VadSegment:
self.device = device
self.dtype = dtype
self.frontend = frontend
self.batch_size = batch_size
@torch.no_grad()
def __call__(
@ -110,10 +111,9 @@ class Speech2VadSegment:
# segments = self.vad_model(**batch)
# b. Forward Encoder sreaming
segments = []
segments_tmp = []
step = 6000
t_offset = 0
step = min(feats_len, 6000)
segments = [[]] * self.batch_size
for t_offset in range(0, feats_len, min(step, feats_len - t_offset)):
if t_offset + step >= feats_len - 1:
step = feats_len - t_offset
@ -129,8 +129,8 @@ class Speech2VadSegment:
batch = to_device(batch, device=self.device)
segments_part = self.vad_model(**batch)
if segments_part:
segments_tmp += segments_part[0]
segments.append(segments_tmp)
for batch_num in range(0, self.batch_size):
segments[batch_num] += segments_part[batch_num]
return segments
@ -254,7 +254,6 @@ def inference_modelscope(
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# do vad segment
results = speech2vadsegment(**batch)

View File

@ -192,7 +192,7 @@ class WindowDetector(object):
class E2EVadModel(nn.Module):
def __init__(self, encoder: FSMN, vad_post_args: Dict[str, Any], streaming=False):
def __init__(self, encoder: FSMN, vad_post_args: Dict[str, Any]):
super(E2EVadModel, self).__init__()
self.vad_opts = VADXOptions(**vad_post_args)
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
@ -227,7 +227,6 @@ class E2EVadModel(nn.Module):
self.data_buf = None
self.data_buf_all = None
self.waveform = None
self.streaming = streaming
self.ResetDetection()
def AllResetDetection(self):
@ -451,11 +450,7 @@ class E2EVadModel(nn.Module):
if not is_final_send:
self.DetectCommonFrames()
else:
if self.streaming:
self.DetectLastFrames()
else:
self.AllResetDetection()
self.DetectAllFrames() # offline decode and is_final_send == True
self.DetectLastFrames()
segments = []
for batch_num in range(0, feats.shape[0]): # only support batch_size = 1 now
segment_batch = []
@ -468,7 +463,8 @@ class E2EVadModel(nn.Module):
self.output_data_buf_offset += 1 # need update this parameter
if segment_batch:
segments.append(segment_batch)
if is_final_send:
self.AllResetDetection()
return segments
def DetectCommonFrames(self) -> int:
@ -494,18 +490,6 @@ class E2EVadModel(nn.Module):
return 0
def DetectAllFrames(self) -> int:
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
return 0
if self.vad_opts.nn_eval_block_size != self.vad_opts.dcd_block_size:
frame_state = FrameState.kFrameStateInvalid
for t in range(0, self.frm_cnt):
frame_state = self.GetFrameState(t)
self.DetectOneFrame(frame_state, t, t == self.frm_cnt - 1)
else:
pass
return 0
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
tmp_cur_frm_state = FrameState.kFrameStateInvalid
if cur_frm_state == FrameState.kFrameStateSpeech:

View File

@ -291,8 +291,7 @@ class VADTask(AbsTask):
model_class = model_choices.get_class(args.model)
except AttributeError:
model_class = model_choices.get_class("e2evad")
model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf,
streaming=args.encoder_conf.get('streaming', False))
model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf)
return model