mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev gzf exp (#1664)
* rwkv 5 * rwkv v4 * rwkv v4 * rwkv * rwkv * update * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step * resume from step
This commit is contained in:
parent
e971e000ad
commit
8fdc372c81
@ -99,8 +99,9 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
|||||||
target_mask = (
|
target_mask = (
|
||||||
[0] * (prompt_ids_len) + [1] * (target_ids_len) + [1]
|
[0] * (prompt_ids_len) + [1] * (target_ids_len) + [1]
|
||||||
) # [sos, task, lid, text, eos]: [0, 0, 1, 1, 1]
|
) # [sos, task, lid, text, eos]: [0, 0, 1, 1, 1]
|
||||||
|
target_mask_lengths = len(target_mask)
|
||||||
target_mask = torch.tensor(target_mask, dtype=torch.float32)
|
target_mask = torch.tensor(target_mask, dtype=torch.float32)
|
||||||
|
target_mask_lengths = torch.tensor([target_mask_lengths], dtype=torch.int32)
|
||||||
return {
|
return {
|
||||||
"speech": speech[0, :, :],
|
"speech": speech[0, :, :],
|
||||||
"speech_lengths": speech_lengths,
|
"speech_lengths": speech_lengths,
|
||||||
@ -130,30 +131,26 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if self.batch_type != "example":
|
if self.batch_type != "example":
|
||||||
b, t, _ = outputs["speech"].shape
|
for i in range(3):
|
||||||
if b * t > self.batch_size:
|
outputs = self._filter_badcase(outputs)
|
||||||
beg = torch.randint(0, 2, ()).item()
|
|
||||||
logging.info(
|
return outputs
|
||||||
f"Warning, b * t: {b * t} > {self.batch_size}, drop half data 1st, beg:{beg}"
|
|
||||||
)
|
def _filter_badcase(self, outputs, i=0):
|
||||||
for key, data_list in outputs.items():
|
b, t, _ = outputs["speech"].shape
|
||||||
outputs[key] = outputs[key][beg : beg + b : 2]
|
if b * t > self.batch_size:
|
||||||
|
beg = torch.randint(0, 2, ()).item()
|
||||||
|
logging.info(
|
||||||
|
f"Warning, b * t: {b * t} > {self.batch_size}, drop half data {i}th, beg:{beg}"
|
||||||
|
)
|
||||||
|
for key, data_list in outputs.items():
|
||||||
|
outputs[key] = outputs[key][beg : beg + b : 2]
|
||||||
|
|
||||||
|
speech_lengths_max = outputs["speech_lengths_max"].max().item()
|
||||||
|
outputs["speech"] = outputs["speech"][:, :speech_lengths_max, :]
|
||||||
|
text_lengths_max = outputs["text_lengths"].max().item()
|
||||||
|
outputs["text"] = outputs["text"][:, :text_lengths_max]
|
||||||
|
target_mask_lengths_max = outputs["target_mask_lengths_max"].max().item()
|
||||||
|
outputs["target_mask"] = outputs["target_mask"][:, :target_mask_lengths_max]
|
||||||
|
|
||||||
b, t, _ = outputs["speech"].shape
|
|
||||||
if b * t > self.batch_size:
|
|
||||||
beg = torch.randint(0, 2, ()).item()
|
|
||||||
logging.info(
|
|
||||||
f"Warning, b * t: {b * t} > {self.batch_size}, drop half data 2nd, beg:{beg}"
|
|
||||||
)
|
|
||||||
for key, data_list in outputs.items():
|
|
||||||
outputs[key] = outputs[key][beg : beg + b : 2]
|
|
||||||
|
|
||||||
b, t, _ = outputs["speech"].shape
|
|
||||||
if b * t > self.batch_size:
|
|
||||||
beg = torch.randint(0, 2, ()).item()
|
|
||||||
logging.info(
|
|
||||||
f"Warning, b * t: {b * t} > {self.batch_size}, drop half data 3th, beg:{beg}"
|
|
||||||
)
|
|
||||||
for key, data_list in outputs.items():
|
|
||||||
outputs[key] = outputs[key][beg : beg + b : 2]
|
|
||||||
return outputs
|
return outputs
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user