diff --git a/funasr/datasets/sense_voice_datasets/datasets.py b/funasr/datasets/sense_voice_datasets/datasets.py index 4f14b35f9..6a79e7541 100644 --- a/funasr/datasets/sense_voice_datasets/datasets.py +++ b/funasr/datasets/sense_voice_datasets/datasets.py @@ -99,8 +99,9 @@ class SenseVoiceDataset(torch.utils.data.Dataset): target_mask = ( [0] * (prompt_ids_len) + [1] * (target_ids_len) + [1] ) # [sos, task, lid, text, eos]: [0, 0, 1, 1, 1] + target_mask_lengths = len(target_mask) target_mask = torch.tensor(target_mask, dtype=torch.float32) - + target_mask_lengths = torch.tensor([target_mask_lengths], dtype=torch.int32) return { "speech": speech[0, :, :], "speech_lengths": speech_lengths, @@ -130,30 +131,26 @@ class SenseVoiceDataset(torch.utils.data.Dataset): ) if self.batch_type != "example": - b, t, _ = outputs["speech"].shape - if b * t > self.batch_size: - beg = torch.randint(0, 2, ()).item() - logging.info( - f"Warning, b * t: {b * t} > {self.batch_size}, drop half data 1st, beg:{beg}" - ) - for key, data_list in outputs.items(): - outputs[key] = outputs[key][beg : beg + b : 2] + for i in range(3): + outputs = self._filter_badcase(outputs) + + return outputs + + def _filter_badcase(self, outputs, i=0): + b, t, _ = outputs["speech"].shape + if b * t > self.batch_size: + beg = torch.randint(0, 2, ()).item() + logging.info( + f"Warning, b * t: {b * t} > {self.batch_size}, drop half data {i}th, beg:{beg}" + ) + for key, data_list in outputs.items(): + outputs[key] = outputs[key][beg : beg + b : 2] + + speech_lengths_max = outputs["speech_lengths_max"].max().item() + outputs["speech"] = outputs["speech"][:, :speech_lengths_max, :] + text_lengths_max = outputs["text_lengths"].max().item() + outputs["text"] = outputs["text"][:, :text_lengths_max] + target_mask_lengths_max = outputs["target_mask_lengths_max"].max().item() + outputs["target_mask"] = outputs["target_mask"][:, :target_mask_lengths_max] - b, t, _ = outputs["speech"].shape - if b * t > self.batch_size: - beg = torch.randint(0, 2, ()).item() - logging.info( - f"Warning, b * t: {b * t} > {self.batch_size}, drop half data 2nd, beg:{beg}" - ) - for key, data_list in outputs.items(): - outputs[key] = outputs[key][beg : beg + b : 2] - - b, t, _ = outputs["speech"].shape - if b * t > self.batch_size: - beg = torch.randint(0, 2, ()).item() - logging.info( - f"Warning, b * t: {b * t} > {self.batch_size}, drop half data 3th, beg:{beg}" - ) - for key, data_list in outputs.items(): - outputs[key] = outputs[key][beg : beg + b : 2] return outputs