Merge pull request #1053 from alibaba-damo-academy/dev_lzr_en

support paraformer-16k-en finetune
This commit is contained in:
Lizerui9926 2023-11-02 17:13:18 +08:00 committed by GitHub
commit 8c904ecadd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 40 additions and 0 deletions

View File

@ -0,0 +1,35 @@
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from funasr.datasets.ms_dataset import MsDataset
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = MsDataset.load(params.data_path)
kwargs = dict(
model=params.model,
model_revision=params.model_revision,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
from funasr.utils.modelscope_param import modelscope_args
params = modelscope_args(model="damo/speech_paraformer-large-vad-punc_asr_nat-en-16k-common-vocab10020")
params.output_dir = "./checkpoint" # m模型保存路径
params.data_path = "./example_data/" # 数据路径
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 1000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
params.model_revision = "v1.0.1"
modelscope_finetune(params)

View File

@ -548,6 +548,7 @@ def build_trainer(modelscope_dict,
init_param = modelscope_dict['init_model']
cmvn_file = modelscope_dict['cmvn_file']
seg_dict_file = modelscope_dict['seg_dict']
bpemodel = modelscope_dict['bpemodel']
# overwrite parameters
with open(config) as f:
@ -581,6 +582,10 @@ def build_trainer(modelscope_dict,
args.seg_dict_file = seg_dict_file
else:
args.seg_dict_file = None
if os.path.exists(bpemodel):
args.bpemodel = bpemodel
else:
args.bpemodel = None
args.data_dir = data_dir
args.train_set = train_set
args.dev_set = dev_set