install requirements automatically

This commit is contained in:
游雁 2024-03-25 11:48:17 +08:00
parent 5942057698
commit 8c1016ca77
3 changed files with 12 additions and 10 deletions

View File

@ -25,11 +25,10 @@ from funasr.utils.load_utils import load_audio_text_image_video
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.train_utils.load_pretrained_model import load_pretrained_model
from funasr.utils import export_utils
try:
from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk
from funasr.models.campplus.cluster_backend import ClusterBackend
except:
print("Notice: If you want to use the speaker diarization, please `pip install hdbscan`")
from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk
from funasr.models.campplus.cluster_backend import ClusterBackend
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):

View File

@ -7,7 +7,6 @@
import scipy
import torch
import sklearn
import hdbscan
import numpy as np
from sklearn.cluster._kmeans import k_means
@ -116,6 +115,8 @@ class UmapHdbscan:
self.min_samples = min_samples
self.min_cluster_size = min_cluster_size
self.metric = metric
import hdbscan
self.hdbscan = hdbscan
def __call__(self, X):
import umap.umap_ as umap
@ -125,7 +126,7 @@ class UmapHdbscan:
n_components=min(self.n_components, X.shape[0] - 2),
metric=self.metric,
).fit_transform(X)
labels = hdbscan.HDBSCAN(
labels = self.hdbscan.HDBSCAN(
min_samples=self.min_samples,
min_cluster_size=self.min_cluster_size,
allow_single_cluster=True).fit_predict(umap_X)

View File

@ -9,8 +9,7 @@ from torch import Tensor
from torch import nn
import whisper
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from funasr.register import tables
@ -27,6 +26,8 @@ class QwenAudioWarp(nn.Module):
"""
def __init__(self, *args, **kwargs):
super().__init__()
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
model_or_path = kwargs.get("model_path", "QwenAudio")
model = AutoModelForCausalLM.from_pretrained(model_or_path, device_map="cpu",
@ -82,7 +83,8 @@ class QwenAudioChatWarp(nn.Module):
Modified from https://github.com/QwenLM/Qwen-Audio
"""
super().__init__()
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
model_or_path = kwargs.get("model_path", "QwenAudio")
bf16 = kwargs.get("bf16", False)
fp16 = kwargs.get("fp16", False)