This commit is contained in:
游雁 2023-08-08 16:49:04 +08:00
parent 8610bb509d
commit 89e244299c
4 changed files with 47 additions and 11 deletions

View File

@ -72,6 +72,7 @@ Overview
:caption: Runtime and Service
./funasr/runtime/docs/SDK_tutorial.md
./funasr/runtime/docs/SDK_tutorial_online.md
./funasr/runtime/python/websocket/README.md
./funasr/runtime/websocket/readme.md
./funasr/runtime/html5/readme.md

View File

@ -32,23 +32,43 @@ For more examples, please refer to [docs](https://alibaba-damo-academy.github.io
Currently, offline file transcription service (CPU) is supported, and concurrent requests of hundreds of channels are supported.
#### Server Deployment
##### The real-time transcription service, Mandarin (CPU)
###### Server Deployment
You can use the following command to complete the deployment:
```shell
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/funasr-runtime-deploy-online-cpu-zh.sh
sudo bash funasr-runtime-deploy-online-cpu-zh.sh install --workspace ./funasr-runtime-resources
```
You can use the following command to complete the deployment with one click:
###### Client Testing
Testing [samples](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/sample/funasr_samples.tar.gz)
```shell
python3 funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode 2pass
```
For more examples, please refer to [docs](runtime/docs/SDK_tutorial_online_zh.md)
#### File Transcription Service, Mandarin (CPU)
##### Server Deployment
You can use the following command to complete the deployment:
```shell
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/funasr-runtime-deploy-offline-cpu-zh.sh
sudo bash funasr-runtime-deploy-offline-cpu-zh.sh install --workspace ./funasr-runtime-resources
```
#### Client Testing
##### Client Testing
Testing [samples](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/sample/funasr_samples.tar.gz)
```shell
python3 funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode offline --audio_in "../audio/asr_example.wav"
```
For more examples, please refer to [docs](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/docs/SDK_tutorial_zh.md)
For more examples, please refer to [docs](runtime/docs/SDK_tutorial_zh.md)
## Industrial Model Egs

View File

@ -31,21 +31,36 @@ python funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode 2pass --chunk
<a name="cpp版本示例"></a>
#### c++版本示例
目前已支持离线文件转写服务CPU,支持上百路并发请求
集成有VADASR与标点恢复模型,支持上百路并发请求
##### 服务端部署
可以用个下面指令,一键部署完成部署
##### 实时语音听写服务部署
```shell
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/funasr-runtime-deploy-online-cpu-zh.sh
sudo bash funasr-runtime-deploy-online-cpu-zh.sh install --workspace ./funasr-runtime-resources
```
##### 客户端测试与使用
客户端测试([samples](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/sample/funasr_samples.tar.gz)
```shell
python3 funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode 2pass
```
更多例子参考([点击此处](runtime/docs/SDK_tutorial_online_zh.md)
##### 离线文件转写服务部署
###### 服务端部署
```shell
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/funasr-runtime-deploy-offline-cpu-zh.sh
sudo bash funasr-runtime-deploy-offline-cpu-zh.sh install --workspace ./funasr-runtime-resources
```
##### 客户端测试
###### 客户端测试
客户端测试([samples](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/sample/funasr_samples.tar.gz)
```shell
python3 funasr_wss_client.py --host "127.0.0.1" --port 10095 --mode offline --audio_in "../audio/asr_example.wav"
```
更多例子参考([点击此处](funasr/runtime/docs/SDK_tutorial_zh.md)
更多例子参考([点击此处](runtime/docs/SDK_tutorial_zh.md)
### 工业模型egs

View File

@ -1,6 +1,6 @@
([简体中文](./SDK_tutorial_online_zh.md)|English)
# FunASR-realtime-transcribe service
# FunASR Realtime Transcribe Service
FunASR offers a real-time speech-to-text service that can be easily deployed locally or on cloud servers. The service integrates various capabilities developed by the speech laboratory of DAMO Academy on the ModelScope, including voice activity detection (VAD), Paraformer-large non-streaming automatic speech recognition (ASR), Paraformer-large streaming ASR, and punctuation prediction (PUNC). The software package supports realtime speech-to-text service as well as high-precision transcription text correction at the end of each sentence and outputs text with punctuation.