mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
fixbug sond initial
This commit is contained in:
parent
65d1005fd2
commit
88efde8799
@ -46,10 +46,10 @@ class DiarSondModel(AbsESPnetModel):
|
||||
frontend: Optional[AbsFrontend],
|
||||
specaug: Optional[AbsSpecAug],
|
||||
normalize: Optional[AbsNormalize],
|
||||
encoder: AbsEncoder,
|
||||
speaker_encoder: AbsEncoder,
|
||||
encoder: torch.nn.Module,
|
||||
speaker_encoder: Optional[torch.nn.Module],
|
||||
ci_scorer: torch.nn.Module,
|
||||
cd_scorer: torch.nn.Module,
|
||||
cd_scorer: Optional[torch.nn.Module],
|
||||
decoder: torch.nn.Module,
|
||||
token_list: list,
|
||||
lsm_weight: float = 0.1,
|
||||
@ -85,9 +85,12 @@ class DiarSondModel(AbsESPnetModel):
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
self.criterion_bce = SequenceBinaryCrossEntropy(normalize_length=length_normalized_loss)
|
||||
self.pse_embedding = self.generate_pse_embedding()
|
||||
self.power_weight = torch.from_numpy(2 ** np.arange(max_spk_num)[np.newaxis, np.newaxis, :])
|
||||
self.int_token_arr = torch.from_numpy(np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :])
|
||||
pse_embedding = self.generate_pse_embedding()
|
||||
self.register_buffer("pse_embedding", pse_embedding)
|
||||
power_weight = torch.from_numpy(2 ** np.arange(max_spk_num)[np.newaxis, np.newaxis, :]).float()
|
||||
self.register_buffer("power_weight", power_weight)
|
||||
int_token_arr = torch.from_numpy(np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :]).int()
|
||||
self.register_buffer("int_token_arr", int_token_arr)
|
||||
self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight
|
||||
self.inter_score_loss_weight = inter_score_loss_weight
|
||||
self.forward_steps = 0
|
||||
@ -95,7 +98,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
def generate_pse_embedding(self):
|
||||
embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float)
|
||||
for idx, pse_label in enumerate(self.token_list):
|
||||
emb = int2vec(pse_label, vec_dim=self.max_spk_num, dtype=np.float)
|
||||
emb = int2vec(int(pse_label), vec_dim=self.max_spk_num, dtype=np.float)
|
||||
embedding[idx] = emb
|
||||
return torch.from_numpy(embedding)
|
||||
|
||||
@ -140,7 +143,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
)
|
||||
# 2. Calculate power-set encoding (PSE) labels
|
||||
raw_pse_labels = torch.sum(binary_labels * self.power_weight, dim=2, keepdim=True)
|
||||
pse_labels = torch.argmax(raw_pse_labels == self.int_token_arr, dim=2)
|
||||
pse_labels = torch.argmax((raw_pse_labels.int() == self.int_token_arr).float(), dim=2)
|
||||
|
||||
# If encoder uses conv* as input_layer (i.e., subsampling),
|
||||
# the sequence length of 'pred' might be slightly less than the
|
||||
@ -153,7 +156,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
loss_diar = self.classification_loss(pred, pse_labels, binary_labels_lengths)
|
||||
loss_spk_dis = self.speaker_discrimination_loss(profile, profile_lengths)
|
||||
loss_inter_ci, loss_inter_cd = self.internal_score_loss(cd_score, ci_score, pse_labels, binary_labels_lengths)
|
||||
label_mask = make_pad_mask(binary_labels_lengths, maxlen=pse_labels.shape[1])
|
||||
label_mask = make_pad_mask(binary_labels_lengths, maxlen=pse_labels.shape[1]).to(pse_labels.device)
|
||||
loss = (loss_diar + self.speaker_discrimination_loss_weight * loss_spk_dis
|
||||
+ self.inter_score_loss_weight * (loss_inter_ci + loss_inter_cd))
|
||||
|
||||
@ -168,8 +171,8 @@ class DiarSondModel(AbsESPnetModel):
|
||||
speaker_falarm,
|
||||
speaker_error,
|
||||
) = self.calc_diarization_error(
|
||||
pred=F.embedding(pred.argmax(dim=2) * label_mask, self.pse_embedding),
|
||||
label=F.embedding(pse_labels * label_mask, self.pse_embedding),
|
||||
pred=F.embedding(pred.argmax(dim=2) * (~label_mask), self.pse_embedding),
|
||||
label=F.embedding(pse_labels * (~label_mask), self.pse_embedding),
|
||||
length=binary_labels_lengths
|
||||
)
|
||||
|
||||
@ -211,11 +214,12 @@ class DiarSondModel(AbsESPnetModel):
|
||||
labels: torch.Tensor,
|
||||
prediction_lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
mask = make_pad_mask(prediction_lengths, maxlen=labels.shape[1])
|
||||
pad_labels = labels.masked_fill(
|
||||
make_pad_mask(prediction_lengths, maxlen=labels.shape[1]),
|
||||
mask.to(predictions.device),
|
||||
value=self.ignore_id
|
||||
)
|
||||
loss = self.criterion_diar(predictions, pad_labels)
|
||||
loss = self.criterion_diar(predictions.contiguous(), pad_labels)
|
||||
|
||||
return loss
|
||||
|
||||
@ -226,24 +230,26 @@ class DiarSondModel(AbsESPnetModel):
|
||||
) -> torch.Tensor:
|
||||
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float() # (B, N, 1)
|
||||
mask = torch.matmul(profile_mask, profile_mask.transpose(1, 2)) # (B, N, N)
|
||||
mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0))
|
||||
mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0).to(mask))
|
||||
|
||||
eps = 1e-12
|
||||
coding_norm = torch.linalg.norm(
|
||||
profile * profile_mask + (1 - profile_mask) * eps,
|
||||
dim=2, keepdim=True
|
||||
) * profile_mask
|
||||
cos_theta = F.cosine_similarity(profile, profile, dim=2, eps=eps) * mask
|
||||
# profile: Batch, N, dim
|
||||
cos_theta = F.cosine_similarity(profile.unsqueeze(2), profile.unsqueeze(1), dim=-1, eps=eps) * mask
|
||||
cos_theta = torch.clip(cos_theta, -1 + eps, 1 - eps)
|
||||
loss = (F.relu(mask * coding_norm * (cos_theta - 0.0))).sum() / mask.sum()
|
||||
|
||||
return loss
|
||||
|
||||
def calculate_multi_labels(self, pse_labels, pse_labels_lengths):
|
||||
mask = make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1])
|
||||
padding_labels = pse_labels.masked_fill(
|
||||
make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1]),
|
||||
mask.to(pse_labels.device),
|
||||
value=0
|
||||
).to(pse_labels.dtype)
|
||||
).to(pse_labels)
|
||||
multi_labels = F.embedding(padding_labels, self.pse_embedding)
|
||||
|
||||
return multi_labels
|
||||
@ -320,7 +326,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
speaker_encoder_outputs: torch.Tensor,
|
||||
seq_len: torch.Tensor = None,
|
||||
spk_len: torch.Tensor = None,
|
||||
) -> torch.Tensor:
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
bb, tt = speech_encoder_outputs.shape[0], speech_encoder_outputs.shape[1]
|
||||
d_sph, d_spk = speech_encoder_outputs.shape[2], speaker_encoder_outputs.shape[2]
|
||||
if self.normalize_speech_speaker:
|
||||
@ -338,9 +344,8 @@ class DiarSondModel(AbsESPnetModel):
|
||||
ci_simi = self.ci_scorer(ge_in, ge_len)[0]
|
||||
else:
|
||||
ci_simi = self.ci_scorer(speech_encoder_outputs, speaker_encoder_outputs)
|
||||
simi = torch.cat([cd_simi, ci_simi], dim=2)
|
||||
|
||||
return simi
|
||||
return ci_simi, cd_simi
|
||||
|
||||
def post_net_forward(self, simi, seq_len):
|
||||
logits = self.decoder(simi, seq_len)[0]
|
||||
@ -360,12 +365,13 @@ class DiarSondModel(AbsESPnetModel):
|
||||
# speaker encoding
|
||||
profile, profile_lengths = self.encode_speaker(profile, profile_lengths)
|
||||
# calculating similarity
|
||||
similarity = self.calc_similarity(speech, profile, speech_lengths, profile_lengths)
|
||||
ci_simi, cd_simi = self.calc_similarity(speech, profile, speech_lengths, profile_lengths)
|
||||
similarity = torch.cat([cd_simi, ci_simi], dim=2)
|
||||
# post net forward
|
||||
logits = self.post_net_forward(similarity, speech_lengths)
|
||||
|
||||
if return_inter_outputs:
|
||||
return logits, [(speech, speech_lengths), (profile, profile_lengths), torch.split(similarity, 2)]
|
||||
return logits, [(speech, speech_lengths), (profile, profile_lengths), (ci_simi, cd_simi)]
|
||||
return logits
|
||||
|
||||
def encode(
|
||||
@ -392,7 +398,8 @@ class DiarSondModel(AbsESPnetModel):
|
||||
# 4. Forward encoder
|
||||
# feats: (Batch, Length, Dim)
|
||||
# -> encoder_out: (Batch, Length2, Dim)
|
||||
encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths)
|
||||
encoder_outputs = self.encoder(feats, feats_lengths)
|
||||
encoder_out, encoder_out_lens = encoder_outputs[:2]
|
||||
|
||||
assert encoder_out.size(0) == speech.size(0), (
|
||||
encoder_out.size(),
|
||||
@ -437,9 +444,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
|
||||
(batch_size, max_len, num_output) = label.size()
|
||||
# mask the padding part
|
||||
mask = np.zeros((batch_size, max_len, num_output))
|
||||
for i in range(batch_size):
|
||||
mask[i, : length[i], :] = 1
|
||||
mask = ~make_pad_mask(length, maxlen=label.shape[1]).unsqueeze(-1).numpy()
|
||||
|
||||
# pred and label have the shape (batch_size, max_len, num_output)
|
||||
label_np = label.data.cpu().numpy().astype(int)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user