mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Merge pull request #462 from alibaba-damo-academy/dev_zc
update itn_pipeline.md
This commit is contained in:
commit
882d565ebc
@ -18,10 +18,12 @@ itn_inference_pipline = pipeline(
|
||||
|
||||
itn_result = itn_inference_pipline(text_in='百二十三')
|
||||
print(itn_result)
|
||||
# 123
|
||||
```
|
||||
- read text data directly.
|
||||
```python
|
||||
rec_result = inference_pipeline(text_in='一九九九年に誕生した同商品にちなみ、約三十年前、二十四歳の頃の幸四郎の写真を公開。')
|
||||
# 1999年に誕生した同商品にちなみ、約30年前、24歳の頃の幸四郎の写真を公開。
|
||||
```
|
||||
- text stored via url,example:https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
|
||||
```python
|
||||
@ -30,22 +32,6 @@ rec_result = inference_pipeline(text_in='https://isv-data.oss-cn-hangzhou.aliyun
|
||||
|
||||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing/inverse_text_normalization)
|
||||
|
||||
#### Modify Your Own ITN Model
|
||||
The rule-based ITN code is open-sourced in [FunTextProcessing](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing), users can modify by their own grammar rules. After modify the rules, the users can export their own ITN models in local directory.
|
||||
|
||||
##### Export ITN Model
|
||||
Use the code in FunASR to export ITN model. An example to export ITN model to local folder is shown as below.
|
||||
```shell
|
||||
cd fun_text_processing/inverse_text_normalization/
|
||||
python export_models.py --language ja --export_dir ./itn_models/
|
||||
```
|
||||
|
||||
##### Evaluate ITN Model
|
||||
Users can evaluate their own ITN model in local directory. Here is an example:
|
||||
```shell
|
||||
python fun_text_processing/inverse_text_normalization/inverse_normalize.py --input_file ja_itn_example.txt --cache_dir ./itn_models/ --output_file output.txt --language=ja
|
||||
```
|
||||
|
||||
### API-reference
|
||||
#### Define pipeline
|
||||
- `task`: `Tasks.inverse_text_processing`
|
||||
@ -59,12 +45,19 @@ python fun_text_processing/inverse_text_normalization/inverse_normalize.py --inp
|
||||
- text file, `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
|
||||
In this case of `text file` input, `output_dir` must be set to save the output results
|
||||
|
||||
## Modify Your Own ITN Model
|
||||
The rule-based ITN code is open-sourced in [FunTextProcessing](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing), users can modify by their own grammar rules for different languages. Let's take Japanese as an example, users can add their own whitelist in ```FunASR/fun_text_processing/inverse_text_normalization/ja/data/whitelist.tsv```. After modified the grammar rules, the users can export and evaluate their own ITN models in local directory.
|
||||
|
||||
## Finetune with pipeline
|
||||
|
||||
### Quick start
|
||||
|
||||
### Finetune with your data
|
||||
|
||||
## Inference with your finetuned model
|
||||
### Export ITN Model
|
||||
Export ITN model via ```FunASR/fun_text_processing/inverse_text_normalization/export_models.py```. An example to export ITN model to local folder is shown as below.
|
||||
```shell
|
||||
cd FunASR/fun_text_processing/inverse_text_normalization/
|
||||
python export_models.py --language ja --export_dir ./itn_models/
|
||||
```
|
||||
|
||||
### Evaluate ITN Model
|
||||
Users can evaluate their own ITN model in local directory via ```FunASR/fun_text_processing/inverse_text_normalization/inverse_normalize.py```. Here is an example:
|
||||
```shell
|
||||
cd FunASR/fun_text_processing/inverse_text_normalization/
|
||||
python inverse_normalize.py --input_file ja_itn_example.txt --cache_dir ./itn_models/ --output_file output.txt --language=ja
|
||||
```
|
||||
Loading…
Reference in New Issue
Block a user