Dev gzf exp (#1649)

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* sensevoice finetune

* bugfix

* update with main (#1631)

* update seaco finetune

* v1.0.24

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* update with main (#1638)

* update seaco finetune

* v1.0.24

* update rwkv template

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sensevoice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

* sense voice

---------

Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
This commit is contained in:
zhifu gao 2024-04-23 19:36:15 +08:00 committed by GitHub
parent 2ac38adbe5
commit 8795bf5bf1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 39 additions and 190 deletions

View File

@ -48,10 +48,10 @@ class EspnetStyleBatchSampler(DistributedSampler):
except:
rank = 0
num_replicas = 1
if rank_split:
logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
rank = 0
num_replicas = 1
# if rank_split:
# logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
# rank = 0
# num_replicas = 1
self.rank = rank
self.num_replicas = num_replicas
self.dataset = dataset

View File

@ -10,67 +10,6 @@ import torch.distributed as dist
from funasr.register import tables
# @tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
# class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
#
# def __init__(self, path):
# super().__init__()
#
# contents = []
# with open(path, encoding='utf-8') as fin:
# for line in fin:
# data = json.loads(line.strip())
# if "text" in data: # for sft
# self.contents.append(data['text'])
# if "source" in data: # for speech lab pretrain
# prompt = data["prompt"]
# source = data["source"]
# target = data["target"]
# source_len = data["source_len"]
# target_len = data["target_len"]
#
# contents.append({"source": source,
# "prompt": prompt,
# "target": target,
# "source_len": source_len,
# "target_len": target_len,
# }
# )
#
# self.contents = []
# total_num = len(contents)
# try:
# rank = dist.get_rank()
# world_size = dist.get_world_size()
# except:
# rank = 0
# world_size = 1
# logging.info("distributed is not initialized, only single shard")
# num_per_rank = total_num // world_size
#
# # rank = 0
# # import ipdb; ipdb.set_trace()
# self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank]
#
# logging.info("in rank: {}, num of samplers: {}, total_num of samplers across ranks: {}".format(rank, len(self.contents), len(contents)))
#
# def __len__(self):
# return len(self.contents)
#
# def __getitem__(self, index):
# try:
# data = self.contents[index]
# except:
# print(index)
# return data
#
# def get_source_len(self, data_dict):
# return data_dict["source_len"]
#
# def get_target_len(self, data_dict):
#
# return data_dict["target_len"] if "target_len" in data_dict else 0
@tables.register("index_ds_classes", "IndexDSJsonl")
@tables.register("index_ds_classes", "IndexDSJsonlRankFull")
@tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
@ -104,37 +43,39 @@ class IndexDSJsonlRankFull(torch.utils.data.Dataset):
file_list = [path]
total_num = len(file_list)
try:
rank = dist.get_rank()
world_size = dist.get_world_size()
except:
rank = 0
world_size = 1
logging.info("distributed is not initialized, only single shard")
if not kwargs.get("rank_split", False):
logging.info(f"Warning, rank_split disenabled, batch and shuffle data in global")
rank = 0
world_size = 1
num_per_rank = total_num // world_size
if num_per_rank * world_size < total_num:
logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
total_num_needed = num_per_rank * world_size
extra_num = total_num_needed - total_num
file_list_tmp = random.choices(file_list, k=extra_num)
file_list += file_list_tmp
logging.info(f"Warning, after random choices: {file_list}")
file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
logging.info(
f"is_training: {is_training}, file_list_rank: {file_list_rank}")
# total_num = len(file_list)
# try:
# rank = dist.get_rank()
# world_size = dist.get_world_size()
# except:
# rank = 0
# world_size = 1
# logging.info("distributed is not initialized, only single shard")
#
# if not kwargs.get("rank_split", False):
# logging.info(f"Warning, rank_split disenabled, batch and shuffle data in global")
# rank = 0
# world_size = 1
#
# num_per_rank = total_num // world_size
# if num_per_rank * world_size < total_num:
# logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
# total_num_needed = num_per_rank * world_size
#
# extra_num = total_num_needed - total_num
# file_list_tmp = random.choices(file_list, k=extra_num)
# file_list += file_list_tmp
# logging.info(f"Warning, after random choices: {file_list}")
#
# file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
#
# logging.info(
# f"is_training: {is_training}, file_list_rank: {file_list_rank}")
# contents = []
# for file_json in file_list_rank:
contents = []
for file_json in file_list_rank:
for file_json in file_list:
with open(file_json.strip(), encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
@ -187,95 +128,3 @@ class IndexDSJsonlRankFull(torch.utils.data.Dataset):
return data_dict.get("target_len", 0)
#
# @tables.register("index_ds_classes", "IndexDSJsonlRankSplit")
# class IndexDSJsonlRankSplit(torch.utils.data.Dataset):
#
# def __init__(self, path: str, **kwargs):
# super().__init__()
# logging.info("building IndexDS")
# self.max_source_length = kwargs.get("max_source_length", 2048)
# self.min_source_length = kwargs.get("min_source_length", 0)
# self.max_target_length = kwargs.get("max_target_length", 2048)
# self.min_target_length = kwargs.get("min_target_length", 0)
#
# data_split_num = kwargs.get("data_split_num", 1)
# data_split_i = kwargs.get("data_split_i", 0)
# if not kwargs.get("is_training", True):
# data_split_num = 1
# data_split_i = 0
# with open(path, encoding='utf-8') as fin:
# file_list_all = fin.readlines()
#
# num_per_slice = len(file_list_all) // data_split_num
# file_list = file_list_all[data_split_i * num_per_slice:(data_split_i + 1) * num_per_slice]
# logging.info(f"data_split_num: {data_split_num}, data_split_i: {data_split_i}, file_list: {file_list}, file_list_all: {file_list_all}")
#
#
# total_num = len(file_list)
# try:
# rank = dist.get_rank()
# world_size = dist.get_world_size()
# except:
# rank = 0
# world_size = 1
# logging.info("distributed is not initialized, only single shard")
# num_per_rank = total_num // world_size
# if num_per_rank * world_size < total_num:
# logging.info(f"Warning, jsonl file:{total_num} could not be divided by world_size: {world_size}, {path}")
#
# file_list_rank = file_list[rank * num_per_rank:(rank + 1) * num_per_rank]
#
# contents = []
# for file_json in file_list_rank:
#
# with open(file_json.strip(), encoding='utf-8') as fin:
# for line in fin:
# data = json.loads(line.strip())
# if "text" in data: # for sft
# contents.append(data['text'])
# if "source" in data: # for speech lab pretrain
# prompt = data.get("prompt", "<ASR>")
# source = data["source"].replace("/cpfs01", "/cpfs_speech/data")
# target = data["target"]
# source_len = data.get("source_len", 1)
# target_len = data.get("target_len", 0)
#
# if source_len < self.min_source_length or source_len > self.max_source_length:
# continue
# if target_len < self.min_target_length or target_len > self.max_target_length:
# continue
# contents_i = {"source": source,
# "prompt": prompt,
# "target": target,
# "source_len": source_len,
# "target_len": target_len,
# }
# text_language = data.get("text_language", None)
# if text_language is not None:
# contents_i["text_language"] = text_language
# # audio_language = data.get("audio_language", None)
# # if audio_language is not None:
# # contents_i["audio_language"] = audio_language
# contents.append(contents_i)
#
# self.contents = contents
#
# logging.info(f"total_num: {len(self.contents)} of samplers in ranks: {rank}, file_list_rank: {file_list_rank}")
#
# def __len__(self):
# return len(self.contents)
#
# def __getitem__(self, index):
# try:
# data = self.contents[index]
# except:
# print(index)
# return data
#
# def get_source_len(self, data_dict):
# return data_dict.get("source_len", 1)
#
# def get_target_len(self, data_dict):
#
# return data_dict.get("target_len", 0)

View File

@ -316,10 +316,10 @@ class CustomDistributedBufferDynamicBatchSampler(DistributedSampler):
rank = 0
num_replicas = 1
if rank_split:
logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
rank = 0
num_replicas = 1
# if rank_split:
# logging.info(f"Warning, rank_split: {rank_split}, batch and shuffle data in local rank")
# rank = 0
# num_replicas = 1
self.rank = rank
self.num_replicas = num_replicas