mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
fffb628d31
commit
873cfae5c3
@ -149,8 +149,8 @@ def main(**kwargs):
|
||||
# dataset
|
||||
logging.info("Build dataloader")
|
||||
dataloader_class = tables.dataloader_classes.get(kwargs["dataset_conf"].get("dataloader", "DataloaderMapStyle"))
|
||||
# dataloader = dataloader_class(**kwargs)
|
||||
dataloader_tr, dataloader_val = dataloader_class(**kwargs)
|
||||
|
||||
trainer = Trainer(local_rank=local_rank,
|
||||
use_ddp=use_ddp,
|
||||
use_fsdp=use_fsdp,
|
||||
@ -172,15 +172,15 @@ def main(**kwargs):
|
||||
except:
|
||||
writer = None
|
||||
|
||||
if use_ddp or use_fsdp:
|
||||
context = Join([model])
|
||||
else:
|
||||
context = nullcontext()
|
||||
# if use_ddp or use_fsdp:
|
||||
# context = Join([model])
|
||||
# else:
|
||||
context = nullcontext()
|
||||
|
||||
for epoch in range(trainer.start_epoch, trainer.max_epoch + 1):
|
||||
time1 = time.perf_counter()
|
||||
with context:
|
||||
|
||||
# dataloader_tr, dataloader_val = dataloader.build_iter(epoch)
|
||||
trainer.train_epoch(
|
||||
model=model,
|
||||
optim=optim,
|
||||
|
||||
@ -212,7 +212,7 @@ class CustomDistributedBufferBatchSampler(Sampler):
|
||||
def set_epoch(self, epoch):
|
||||
self.epoch = epoch
|
||||
|
||||
class CustomDistributedDynamicBatchSampler(Sampler):
|
||||
class CustomDistributedDynamicBatchSampler(DistributedSampler):
|
||||
def __init__(self, dataset,
|
||||
batch_size,
|
||||
num_replicas=None,
|
||||
|
||||
@ -25,6 +25,37 @@ def DataloaderMapStyle(frontend=None, tokenizer=None, **kwargs):
|
||||
|
||||
return dataloader_tr, dataloader_val
|
||||
|
||||
# @tables.register("dataloader_classes", "DataloaderMapStyle")
|
||||
class DataloaderMapStyle:
|
||||
def __init__(self, frontend=None, tokenizer=None, **kwargs):
|
||||
# dataset
|
||||
logging.info("Build dataloader")
|
||||
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
|
||||
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer,
|
||||
is_training=True, **kwargs.get("dataset_conf"))
|
||||
dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer,
|
||||
is_training=False, **kwargs.get("dataset_conf"))
|
||||
|
||||
self.dataset_tr = dataset_tr
|
||||
self.dataset_val = dataset_val
|
||||
self.kwargs = kwargs
|
||||
|
||||
def build_iter(self, epoch=0):
|
||||
# dataloader
|
||||
batch_sampler = self.kwargs["dataset_conf"].get("batch_sampler", "BatchSampler")
|
||||
batch_sampler_val = None
|
||||
if batch_sampler is not None:
|
||||
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
|
||||
batch_sampler = batch_sampler_class(self.dataset_tr, **self.kwargs.get("dataset_conf"))
|
||||
batch_sampler_val = batch_sampler_class(self.dataset_val, is_training=False, **self.kwargs.get("dataset_conf"))
|
||||
|
||||
batch_sampler["batch_sampler"].set_epoch(epoch)
|
||||
batch_sampler_val.set_epoch(epohc)
|
||||
dataloader_tr = torch.utils.data.DataLoader(self.dataset_tr, collate_fn=self.dataset_tr.collator, **batch_sampler)
|
||||
dataloader_val = torch.utils.data.DataLoader(self.dataset_val, collate_fn=self.dataset_val.collator, **batch_sampler_val)
|
||||
|
||||
return dataloader_tr, dataloader_val
|
||||
|
||||
|
||||
@tables.register("dataloader_classes", "DataloaderIterable")
|
||||
def DataloaderIterable(frontend=None, tokenizer=None, **kwargs):
|
||||
|
||||
@ -249,6 +249,9 @@ class Trainer:
|
||||
speed_stats = {}
|
||||
time5 = time.perf_counter()
|
||||
iterator_stop = torch.tensor(0).to(self.device)
|
||||
dist.barrier()
|
||||
print(f"before iter, iterator_stop: {iterator_stop}\n")
|
||||
dataloader_train.batch_sampler.set_epoch(epoch)
|
||||
for batch_idx, batch in enumerate(dataloader_train):
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
|
||||
@ -392,9 +395,13 @@ class Trainer:
|
||||
speed_stats = {}
|
||||
time5 = time.perf_counter()
|
||||
iterator_stop = torch.tensor(0).to(self.device)
|
||||
dist.barrier()
|
||||
print(f"before iter, iterator_stop: {iterator_stop}\n")
|
||||
for batch_idx, batch in enumerate(dataloader_val):
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
dist.all_reduce(iterator_stop, dist.ReduceOp.SUM)
|
||||
if epoch >= 1:
|
||||
print(f"iterator_stop: {iterator_stop}\n")
|
||||
if iterator_stop > 0:
|
||||
break
|
||||
time1 = time.perf_counter()
|
||||
|
||||
Loading…
Reference in New Issue
Block a user