add sond model

This commit is contained in:
志浩 2023-02-10 19:01:52 +08:00
parent f6a1cdaf34
commit 7fe447185c

View File

@ -63,6 +63,58 @@ class MultiLayeredConv1d(torch.nn.Module):
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
class FsmnFeedForward(torch.nn.Module):
"""Position-wise feed forward for FSMN blocks.
This is a module of multi-leyered conv1d designed
to replace position-wise feed-forward network
in FSMN block.
"""
def __init__(self, in_chans, hidden_chans, out_chans, kernel_size, dropout_rate):
"""Initialize FsmnFeedForward module.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
out_chans (int): Number of output channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
"""
super(FsmnFeedForward, self).__init__()
self.w_1 = torch.nn.Conv1d(
in_chans,
hidden_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.w_2 = torch.nn.Conv1d(
hidden_chans,
out_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
bias=False
)
self.norm = torch.nn.LayerNorm(hidden_chans)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x, ilens=None):
"""Calculate forward propagation.
Args:
x (torch.Tensor): Batch of input tensors (B, T, in_chans).
Returns:
torch.Tensor: Batch of output tensors (B, T, out_chans).
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.norm(self.dropout(x)).transpose(-1, 1)).transpose(-1, 1), ilens
class Conv1dLinear(torch.nn.Module):
"""Conv1D + Linear for Transformer block.