mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update ola
This commit is contained in:
parent
e27de5aa6b
commit
7de11ad9ef
413
funasr/bin/eend_ola_inference.py
Executable file
413
funasr/bin/eend_ola_inference.py
Executable file
@ -0,0 +1,413 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.models.frontend.wav_frontend import WavFrontendMel23
|
||||
from funasr.tasks.diar import EENDOLADiarTask
|
||||
from funasr.torch_utils.device_funcs import to_device
|
||||
from funasr.utils import config_argparse
|
||||
from funasr.utils.cli_utils import get_commandline_args
|
||||
from funasr.utils.types import str2bool
|
||||
from funasr.utils.types import str2triple_str
|
||||
from funasr.utils.types import str_or_none
|
||||
|
||||
|
||||
class Speech2Diarization:
|
||||
"""Speech2Diarlization class
|
||||
|
||||
Examples:
|
||||
>>> import soundfile
|
||||
>>> import numpy as np
|
||||
>>> speech2diar = Speech2Diarization("diar_sond_config.yml", "diar_sond.pth")
|
||||
>>> profile = np.load("profiles.npy")
|
||||
>>> audio, rate = soundfile.read("speech.wav")
|
||||
>>> speech2diar(audio, profile)
|
||||
{"spk1": [(int, int), ...], ...}
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
diar_train_config: Union[Path, str] = None,
|
||||
diar_model_file: Union[Path, str] = None,
|
||||
device: str = "cpu",
|
||||
dtype: str = "float32",
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
# 1. Build Diarization model
|
||||
diar_model, diar_train_args = EENDOLADiarTask.build_model_from_file(
|
||||
config_file=diar_train_config,
|
||||
model_file=diar_model_file,
|
||||
device=device
|
||||
)
|
||||
frontend = None
|
||||
if diar_train_args.frontend is not None and diar_train_args.frontend_conf is not None:
|
||||
frontend = WavFrontendMel23(**diar_train_args.frontend_conf)
|
||||
|
||||
# set up seed for eda
|
||||
np.random.seed(diar_train_args.seed)
|
||||
torch.manual_seed(diar_train_args.seed)
|
||||
torch.cuda.manual_seed(diar_train_args.seed)
|
||||
os.environ['PYTORCH_SEED'] = str(diar_train_args.seed)
|
||||
logging.info("diar_model: {}".format(diar_model))
|
||||
logging.info("diar_train_args: {}".format(diar_train_args))
|
||||
diar_model.to(dtype=getattr(torch, dtype)).eval()
|
||||
|
||||
self.diar_model = diar_model
|
||||
self.diar_train_args = diar_train_args
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.frontend = frontend
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
speech: Union[torch.Tensor, np.ndarray],
|
||||
speech_lengths: Union[torch.Tensor, np.ndarray] = None
|
||||
):
|
||||
"""Inference
|
||||
|
||||
Args:
|
||||
speech: Input speech data
|
||||
Returns:
|
||||
diarization results
|
||||
|
||||
"""
|
||||
assert check_argument_types()
|
||||
# Input as audio signal
|
||||
if isinstance(speech, np.ndarray):
|
||||
speech = torch.tensor(speech)
|
||||
|
||||
if self.frontend is not None:
|
||||
feats, feats_len = self.frontend.forward(speech, speech_lengths)
|
||||
feats = to_device(feats, device=self.device)
|
||||
feats_len = feats_len.int()
|
||||
self.diar_model.frontend = None
|
||||
else:
|
||||
feats = speech
|
||||
feats_len = speech_lengths
|
||||
batch = {"speech": feats, "speech_lengths": feats_len}
|
||||
batch = to_device(batch, device=self.device)
|
||||
results = self.diar_model.estimate_sequential(**batch)
|
||||
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(
|
||||
model_tag: Optional[str] = None,
|
||||
**kwargs: Optional[Any],
|
||||
):
|
||||
"""Build Speech2Diarization instance from the pretrained model.
|
||||
|
||||
Args:
|
||||
model_tag (Optional[str]): Model tag of the pretrained models.
|
||||
Currently, the tags of espnet_model_zoo are supported.
|
||||
|
||||
Returns:
|
||||
Speech2Xvector: Speech2Xvector instance.
|
||||
|
||||
"""
|
||||
if model_tag is not None:
|
||||
try:
|
||||
from espnet_model_zoo.downloader import ModelDownloader
|
||||
|
||||
except ImportError:
|
||||
logging.error(
|
||||
"`espnet_model_zoo` is not installed. "
|
||||
"Please install via `pip install -U espnet_model_zoo`."
|
||||
)
|
||||
raise
|
||||
d = ModelDownloader()
|
||||
kwargs.update(**d.download_and_unpack(model_tag))
|
||||
|
||||
return Speech2Diarization(**kwargs)
|
||||
|
||||
|
||||
def inference_modelscope(
|
||||
diar_train_config: str,
|
||||
diar_model_file: str,
|
||||
output_dir: Optional[str] = None,
|
||||
batch_size: int = 1,
|
||||
dtype: str = "float32",
|
||||
ngpu: int = 0,
|
||||
num_workers: int = 0,
|
||||
log_level: Union[int, str] = "INFO",
|
||||
key_file: Optional[str] = None,
|
||||
model_tag: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = True,
|
||||
streaming: bool = False,
|
||||
param_dict: Optional[dict] = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if batch_size > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
if ngpu > 1:
|
||||
raise NotImplementedError("only single GPU decoding is supported")
|
||||
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
logging.info("param_dict: {}".format(param_dict))
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Build speech2diar
|
||||
speech2diar_kwargs = dict(
|
||||
diar_train_config=diar_train_config,
|
||||
diar_model_file=diar_model_file,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
streaming=streaming,
|
||||
)
|
||||
logging.info("speech2diarization_kwargs: {}".format(speech2diar_kwargs))
|
||||
speech2diar = Speech2Diarization.from_pretrained(
|
||||
model_tag=model_tag,
|
||||
**speech2diar_kwargs,
|
||||
)
|
||||
speech2diar.diar_model.eval()
|
||||
|
||||
def output_results_str(results: dict, uttid: str):
|
||||
rst = []
|
||||
mid = uttid.rsplit("-", 1)[0]
|
||||
for key in results:
|
||||
results[key] = [(x[0] / 100, x[1] / 100) for x in results[key]]
|
||||
template = "SPEAKER {} 0 {:.2f} {:.2f} <NA> <NA> {} <NA> <NA>"
|
||||
for spk, segs in results.items():
|
||||
rst.extend([template.format(mid, st, ed, spk) for st, ed in segs])
|
||||
|
||||
return "\n".join(rst)
|
||||
|
||||
def _forward(
|
||||
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
||||
raw_inputs: List[List[Union[np.ndarray, torch.Tensor, str, bytes]]] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
param_dict: Optional[dict] = None,
|
||||
):
|
||||
# 2. Build data-iterator
|
||||
if data_path_and_name_and_type is None and raw_inputs is not None:
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = EENDOLADiarTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=EENDOLADiarTask.build_preprocess_fn(speech2diar.diar_train_args, False),
|
||||
collate_fn=EENDOLADiarTask.build_collate_fn(speech2diar.diar_train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
# 3. Start for-loop
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
if output_path is not None:
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
output_writer = open("{}/result.txt".format(output_path), "w")
|
||||
result_list = []
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
|
||||
results = speech2diar(**batch)
|
||||
# Only supporting batch_size==1
|
||||
key, value = keys[0], output_results_str(results, keys[0])
|
||||
item = {"key": key, "value": value}
|
||||
result_list.append(item)
|
||||
if output_path is not None:
|
||||
output_writer.write(value)
|
||||
output_writer.flush()
|
||||
|
||||
if output_path is not None:
|
||||
output_writer.close()
|
||||
|
||||
return result_list
|
||||
|
||||
return _forward
|
||||
|
||||
|
||||
def inference(
|
||||
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
|
||||
diar_train_config: Optional[str],
|
||||
diar_model_file: Optional[str],
|
||||
output_dir: Optional[str] = None,
|
||||
batch_size: int = 1,
|
||||
dtype: str = "float32",
|
||||
ngpu: int = 0,
|
||||
seed: int = 0,
|
||||
num_workers: int = 1,
|
||||
log_level: Union[int, str] = "INFO",
|
||||
key_file: Optional[str] = None,
|
||||
model_tag: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = True,
|
||||
streaming: bool = False,
|
||||
smooth_size: int = 83,
|
||||
dur_threshold: int = 10,
|
||||
out_format: str = "vad",
|
||||
**kwargs,
|
||||
):
|
||||
inference_pipeline = inference_modelscope(
|
||||
diar_train_config=diar_train_config,
|
||||
diar_model_file=diar_model_file,
|
||||
output_dir=output_dir,
|
||||
batch_size=batch_size,
|
||||
dtype=dtype,
|
||||
ngpu=ngpu,
|
||||
seed=seed,
|
||||
num_workers=num_workers,
|
||||
log_level=log_level,
|
||||
key_file=key_file,
|
||||
model_tag=model_tag,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
streaming=streaming,
|
||||
smooth_size=smooth_size,
|
||||
dur_threshold=dur_threshold,
|
||||
out_format=out_format,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
return inference_pipeline(data_path_and_name_and_type, raw_inputs=None)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="Speaker verification/x-vector extraction",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
# Note(kamo): Use '_' instead of '-' as separator.
|
||||
# '-' is confusing if written in yaml.
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=lambda x: x.upper(),
|
||||
default="INFO",
|
||||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||||
help="The verbose level of logging",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, required=False)
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gpuid_list",
|
||||
type=str,
|
||||
default="",
|
||||
help="The visible gpus",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
default="float32",
|
||||
choices=["float16", "float32", "float64"],
|
||||
help="Data type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of workers used for DataLoader",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Input data related")
|
||||
group.add_argument(
|
||||
"--data_path_and_name_and_type",
|
||||
type=str2triple_str,
|
||||
required=False,
|
||||
action="append",
|
||||
)
|
||||
group.add_argument("--key_file", type=str_or_none)
|
||||
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
||||
|
||||
group = parser.add_argument_group("The model configuration related")
|
||||
group.add_argument(
|
||||
"--diar_train_config",
|
||||
type=str,
|
||||
help="diarization training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--diar_model_file",
|
||||
type=str,
|
||||
help="diarization model parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--dur_threshold",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The threshold for short segments in number frames"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--smooth_size",
|
||||
type=int,
|
||||
default=83,
|
||||
help="The smoothing window length in number frames"
|
||||
)
|
||||
group.add_argument(
|
||||
"--model_tag",
|
||||
type=str,
|
||||
help="Pretrained model tag. If specify this option, *_train_config and "
|
||||
"*_file will be overwritten",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size for inference",
|
||||
)
|
||||
parser.add_argument("--streaming", type=str2bool, default=False)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
kwargs.pop("config", None)
|
||||
logging.info("args: {}".format(kwargs))
|
||||
if args.output_dir is None:
|
||||
jobid, n_gpu = 1, 1
|
||||
gpuid = args.gpuid_list.split(",")[jobid - 1]
|
||||
else:
|
||||
jobid = int(args.output_dir.split(".")[-1])
|
||||
n_gpu = len(args.gpuid_list.split(","))
|
||||
gpuid = args.gpuid_list.split(",")[(jobid - 1) % n_gpu]
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
|
||||
results_list = inference(**kwargs)
|
||||
for results in results_list:
|
||||
print("{} {}".format(results["key"], results["value"]))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user