mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
vad docs
This commit is contained in:
parent
570901174e
commit
7ca311f847
@ -1,111 +0,0 @@
|
||||
# Voice Activity Detection
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take model of FSMN-VAD as example to demonstrate the usage.
|
||||
|
||||
## Inference
|
||||
|
||||
### Quick start
|
||||
#### [FSMN-VAD model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
|
||||
```python
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
)
|
||||
|
||||
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
|
||||
print(segments_result)
|
||||
```
|
||||
#### [FSMN-VAD-online model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
|
||||
```python
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
)
|
||||
import soundfile
|
||||
speech, sample_rate = soundfile.read("example/asr_example.wav")
|
||||
|
||||
param_dict = {"in_cache": dict(), "is_final": False}
|
||||
chunk_stride = 1600# 100ms
|
||||
# first chunk, 100ms
|
||||
speech_chunk = speech[0:chunk_stride]
|
||||
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
|
||||
print(rec_result)
|
||||
# next chunk, 480ms
|
||||
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
|
||||
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
|
||||
print(rec_result)
|
||||
```
|
||||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/236)
|
||||
|
||||
|
||||
|
||||
#### API-reference
|
||||
##### Define pipeline
|
||||
- `task`: `Tasks.auto_speech_recognition`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Defalut), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `ncpu`: `1` (Defalut), sets the number of threads used for intraop parallelism on CPU
|
||||
- `output_dir`: `None` (Defalut), the output path of results if set
|
||||
- `batch_size`: `1` (Defalut), batch size when decoding
|
||||
##### Infer pipeline
|
||||
- `audio_in`: the input to decode, which could be:
|
||||
- wav_path, `e.g.`: asr_example.wav,
|
||||
- pcm_path, `e.g.`: asr_example.pcm,
|
||||
- audio bytes stream, `e.g.`: bytes data from a microphone
|
||||
- audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
|
||||
- wav.scp, kaldi style wav list (`wav_id \t wav_path``), `e.g.`:
|
||||
```text
|
||||
asr_example1 ./audios/asr_example1.wav
|
||||
asr_example2 ./audios/asr_example2.wav
|
||||
```
|
||||
In this case of `wav.scp` input, `output_dir` must be set to save the output results
|
||||
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
|
||||
- `output_dir`: None (Defalut), the output path of results if set
|
||||
|
||||
### Inference with multi-thread CPUs or multi GPUs
|
||||
FunASR also offer recipes [infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
- Setting parameters in `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
|
||||
- Decode with multi GPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
--data_dir "./data/test" \
|
||||
--output_dir "./results" \
|
||||
--batch_size 64 \
|
||||
--gpu_inference true \
|
||||
--gpuid_list "0,1"
|
||||
```
|
||||
- Decode with multi-thread CPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
--data_dir "./data/test" \
|
||||
--output_dir "./results" \
|
||||
--gpu_inference false \
|
||||
--njob 64
|
||||
```
|
||||
|
||||
|
||||
## Finetune with pipeline
|
||||
|
||||
### Quick start
|
||||
|
||||
### Finetune with your data
|
||||
|
||||
## Inference with your finetuned model
|
||||
|
||||
1
docs/modescope_pipeline/vad_pipeline.md
Symbolic link
1
docs/modescope_pipeline/vad_pipeline.md
Symbolic link
@ -0,0 +1 @@
|
||||
../../egs_modelscope/vad/TEMPLATE/README.md
|
||||
110
egs_modelscope/vad/TEMPLATE/README.md
Normal file
110
egs_modelscope/vad/TEMPLATE/README.md
Normal file
@ -0,0 +1,110 @@
|
||||
# Voice Activity Detection
|
||||
|
||||
> **Note**:
|
||||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take model of FSMN-VAD as example to demonstrate the usage.
|
||||
|
||||
## Inference
|
||||
|
||||
### Quick start
|
||||
#### [FSMN-VAD model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
|
||||
```python
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
)
|
||||
|
||||
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
|
||||
print(segments_result)
|
||||
```
|
||||
#### [FSMN-VAD-online model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
|
||||
```python
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
|
||||
)
|
||||
import soundfile
|
||||
speech, sample_rate = soundfile.read("example/asr_example.wav")
|
||||
|
||||
param_dict = {"in_cache": dict(), "is_final": False}
|
||||
chunk_stride = 1600# 100ms
|
||||
# first chunk, 100ms
|
||||
speech_chunk = speech[0:chunk_stride]
|
||||
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
|
||||
print(rec_result)
|
||||
# next chunk, 480ms
|
||||
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
|
||||
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
|
||||
print(rec_result)
|
||||
```
|
||||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/236)
|
||||
|
||||
|
||||
|
||||
#### API-reference
|
||||
##### Define pipeline
|
||||
- `task`: `Tasks.auto_speech_recognition`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `ngpu`: `1` (Defalut), decoding on GPU. If ngpu=0, decoding on CPU
|
||||
- `ncpu`: `1` (Defalut), sets the number of threads used for intraop parallelism on CPU
|
||||
- `output_dir`: `None` (Defalut), the output path of results if set
|
||||
- `batch_size`: `1` (Defalut), batch size when decoding
|
||||
##### Infer pipeline
|
||||
- `audio_in`: the input to decode, which could be:
|
||||
- wav_path, `e.g.`: asr_example.wav,
|
||||
- pcm_path, `e.g.`: asr_example.pcm,
|
||||
- audio bytes stream, `e.g.`: bytes data from a microphone
|
||||
- audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
|
||||
- wav.scp, kaldi style wav list (`wav_id \t wav_path``), `e.g.`:
|
||||
```text
|
||||
asr_example1 ./audios/asr_example1.wav
|
||||
asr_example2 ./audios/asr_example2.wav
|
||||
```
|
||||
In this case of `wav.scp` input, `output_dir` must be set to save the output results
|
||||
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
|
||||
- `output_dir`: None (Defalut), the output path of results if set
|
||||
|
||||
### Inference with multi-thread CPUs or multi GPUs
|
||||
FunASR also offer recipes [infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||||
|
||||
- Setting parameters in `infer.sh`
|
||||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||||
- `data_dir`: the dataset dir needs to include `wav.scp`
|
||||
- `output_dir`: output dir of the recognition results
|
||||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||||
|
||||
- Decode with multi GPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
--data_dir "./data/test" \
|
||||
--output_dir "./results" \
|
||||
--batch_size 64 \
|
||||
--gpu_inference true \
|
||||
--gpuid_list "0,1"
|
||||
```
|
||||
- Decode with multi-thread CPUs:
|
||||
```shell
|
||||
bash infer.sh \
|
||||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
--data_dir "./data/test" \
|
||||
--output_dir "./results" \
|
||||
--gpu_inference false \
|
||||
--njob 64
|
||||
```
|
||||
|
||||
## Finetune with pipeline
|
||||
|
||||
### Quick start
|
||||
|
||||
### Finetune with your data
|
||||
|
||||
## Inference with your finetuned model
|
||||
|
||||
25
egs_modelscope/vad/TEMPLATE/infer.py
Normal file
25
egs_modelscope/vad/TEMPLATE/infer.py
Normal file
@ -0,0 +1,25 @@
|
||||
import os
|
||||
import shutil
|
||||
import argparse
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
def modelscope_infer(args):
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.voice_activity_detection,
|
||||
model=args.model,
|
||||
output_dir=args.output_dir,
|
||||
batch_size=args.batch_size,
|
||||
)
|
||||
inference_pipeline(audio_in=args.audio_in)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model', type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
|
||||
parser.add_argument('--audio_in', type=str, default="./data/test/wav.scp")
|
||||
parser.add_argument('--output_dir', type=str, default="./results/")
|
||||
parser.add_argument('--batch_size', type=int, default=64)
|
||||
parser.add_argument('--gpuid', type=str, default="0")
|
||||
args = parser.parse_args()
|
||||
modelscope_infer(args)
|
||||
71
egs_modelscope/vad/TEMPLATE/infer.sh
Normal file
71
egs_modelscope/vad/TEMPLATE/infer.sh
Normal file
@ -0,0 +1,71 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
set -u
|
||||
set -o pipefail
|
||||
|
||||
stage=1
|
||||
stop_stage=2
|
||||
model="damo/speech_fsmn_vad_zh-cn-16k-common"
|
||||
data_dir="./data/test"
|
||||
output_dir="./results"
|
||||
batch_size=64
|
||||
gpu_inference=true # whether to perform gpu decoding
|
||||
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
|
||||
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
|
||||
checkpoint_dir=
|
||||
checkpoint_name="valid.cer_ctc.ave.pb"
|
||||
|
||||
. utils/parse_options.sh || exit 1;
|
||||
|
||||
if ${gpu_inference} == "true"; then
|
||||
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
|
||||
else
|
||||
nj=$njob
|
||||
batch_size=1
|
||||
gpuid_list=""
|
||||
for JOB in $(seq ${nj}); do
|
||||
gpuid_list=$gpuid_list"-1,"
|
||||
done
|
||||
fi
|
||||
|
||||
mkdir -p $output_dir/split
|
||||
split_scps=""
|
||||
for JOB in $(seq ${nj}); do
|
||||
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
|
||||
done
|
||||
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
|
||||
|
||||
if ${checkpoint_dir}; then
|
||||
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
|
||||
model=${checkpoint_dir}/${model}
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
|
||||
echo "Decoding ..."
|
||||
gpuid_list_array=(${gpuid_list//,/ })
|
||||
for JOB in $(seq ${nj}); do
|
||||
{
|
||||
id=$((JOB-1))
|
||||
gpuid=${gpuid_list_array[$id]}
|
||||
mkdir -p ${output_dir}/output.$JOB
|
||||
python infer.py \
|
||||
--model ${model} \
|
||||
--audio_in ${output_dir}/split/wav.$JOB.scp \
|
||||
--output_dir ${output_dir}/output.$JOB \
|
||||
--batch_size ${batch_size} \
|
||||
--gpuid ${gpuid}
|
||||
}&
|
||||
done
|
||||
wait
|
||||
|
||||
mkdir -p ${output_dir}/1best_recog
|
||||
for f in token score text; do
|
||||
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
|
||||
for i in $(seq "${nj}"); do
|
||||
cat "${output_dir}/output.${i}/1best_recog/${f}"
|
||||
done | sort -k1 >"${output_dir}/1best_recog/${f}"
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
1
egs_modelscope/vad/TEMPLATE/utils
Symbolic link
1
egs_modelscope/vad/TEMPLATE/utils
Symbolic link
@ -0,0 +1 @@
|
||||
../../../egs/aishell/transformer/utils
|
||||
Loading…
Reference in New Issue
Block a user