This commit is contained in:
游雁 2023-04-21 00:56:05 +08:00
parent 570901174e
commit 7ca311f847
5 changed files with 208 additions and 111 deletions

View File

@ -1,111 +0,0 @@
# Voice Activity Detection
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take model of FSMN-VAD as example to demonstrate the usage.
## Inference
### Quick start
#### [FSMN-VAD model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.voice_activity_detection,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
print(segments_result)
```
#### [FSMN-VAD-online model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
```python
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
param_dict = {"in_cache": dict(), "is_final": False}
chunk_stride = 1600# 100ms
# first chunk, 100ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 480ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
```
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/236)
#### API-reference
##### Define pipeline
- `task`: `Tasks.auto_speech_recognition`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Defalut), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: `1` (Defalut), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: `None` (Defalut), the output path of results if set
- `batch_size`: `1` (Defalut), batch size when decoding
##### Infer pipeline
- `audio_in`: the input to decode, which could be:
- wav_path, `e.g.`: asr_example.wav,
- pcm_path, `e.g.`: asr_example.pcm,
- audio bytes stream, `e.g.`: bytes data from a microphone
- audio sample point`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
- wav.scp, kaldi style wav list (`wav_id \t wav_path``), `e.g.`:
```text
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
```
In this case of `wav.scp` input, `output_dir` must be set to save the output results
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
- `output_dir`: None (Defalut), the output path of results if set
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
- Setting parameters in `infer.sh`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
- `output_dir`: output dir of the recognition results
- `batch_size`: `64` (Default), batch size of inference on gpu
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
```
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
```
## Finetune with pipeline
### Quick start
### Finetune with your data
## Inference with your finetuned model

View File

@ -0,0 +1 @@
../../egs_modelscope/vad/TEMPLATE/README.md

View File

@ -0,0 +1,110 @@
# Voice Activity Detection
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take model of FSMN-VAD as example to demonstrate the usage.
## Inference
### Quick start
#### [FSMN-VAD model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.voice_activity_detection,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
print(segments_result)
```
#### [FSMN-VAD-online model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/summary)
```python
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
param_dict = {"in_cache": dict(), "is_final": False}
chunk_stride = 1600# 100ms
# first chunk, 100ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 480ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
```
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/236)
#### API-reference
##### Define pipeline
- `task`: `Tasks.auto_speech_recognition`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Defalut), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: `1` (Defalut), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: `None` (Defalut), the output path of results if set
- `batch_size`: `1` (Defalut), batch size when decoding
##### Infer pipeline
- `audio_in`: the input to decode, which could be:
- wav_path, `e.g.`: asr_example.wav,
- pcm_path, `e.g.`: asr_example.pcm,
- audio bytes stream, `e.g.`: bytes data from a microphone
- audio sample point`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
- wav.scp, kaldi style wav list (`wav_id \t wav_path``), `e.g.`:
```text
asr_example1 ./audios/asr_example1.wav
asr_example2 ./audios/asr_example2.wav
```
In this case of `wav.scp` input, `output_dir` must be set to save the output results
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
- `output_dir`: None (Defalut), the output path of results if set
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
- Setting parameters in `infer.sh`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `data_dir`: the dataset dir needs to include `wav.scp`
- `output_dir`: output dir of the recognition results
- `batch_size`: `64` (Default), batch size of inference on gpu
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
```
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
```
## Finetune with pipeline
### Quick start
### Finetune with your data
## Inference with your finetuned model

View File

@ -0,0 +1,25 @@
import os
import shutil
import argparse
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
def modelscope_infer(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
inference_pipeline = pipeline(
task=Tasks.voice_activity_detection,
model=args.model,
output_dir=args.output_dir,
batch_size=args.batch_size,
)
inference_pipeline(audio_in=args.audio_in)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
parser.add_argument('--audio_in', type=str, default="./data/test/wav.scp")
parser.add_argument('--output_dir', type=str, default="./results/")
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--gpuid', type=str, default="0")
args = parser.parse_args()
modelscope_infer(args)

View File

@ -0,0 +1,71 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_fsmn_vad_zh-cn-16k-common"
data_dir="./data/test"
output_dir="./results"
batch_size=64
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if ${checkpoint_dir}; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi

View File

@ -0,0 +1 @@
../../../egs/aishell/transformer/utils