mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
export
This commit is contained in:
parent
5e59904fd4
commit
7c5fdf30f4
@ -0,0 +1,3 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
from .paraformer_bin import Paraformer
|
||||
from .vad_bin import Fsmn_vad
|
||||
@ -0,0 +1,187 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
|
||||
import copy
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
from .utils.utils import (CharTokenizer, Hypothesis, ONNXRuntimeError,
|
||||
OrtInferSession, TokenIDConverter, get_logger,
|
||||
read_yaml)
|
||||
from .utils.postprocess_utils import sentence_postprocess
|
||||
from .utils.frontend import WavFrontend
|
||||
from .utils.timestamp_utils import time_stamp_lfr6_onnx
|
||||
|
||||
logging = get_logger()
|
||||
|
||||
|
||||
class Paraformer():
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
plot_timestamp_to: str = "",
|
||||
pred_bias: int = 1,
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.onnx')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||||
config_file = os.path.join(model_dir, 'config.yaml')
|
||||
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.converter = TokenIDConverter(config['token_list'])
|
||||
self.tokenizer = CharTokenizer()
|
||||
self.frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf']
|
||||
)
|
||||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||||
self.batch_size = batch_size
|
||||
self.plot_timestamp_to = plot_timestamp_to
|
||||
self.pred_bias = pred_bias
|
||||
|
||||
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
asr_res = []
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
||||
try:
|
||||
outputs = self.infer(feats, feats_len)
|
||||
am_scores, valid_token_lens = outputs[0], outputs[1]
|
||||
if len(outputs) == 4:
|
||||
# for BiCifParaformer Inference
|
||||
us_alphas, us_peaks = outputs[2], outputs[3]
|
||||
else:
|
||||
us_alphas, us_peaks = None, None
|
||||
except ONNXRuntimeError:
|
||||
#logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
preds = ['']
|
||||
else:
|
||||
preds = self.decode(am_scores, valid_token_lens)
|
||||
if us_peaks is None:
|
||||
for pred in preds:
|
||||
pred = sentence_postprocess(pred)
|
||||
asr_res.append({'preds': pred})
|
||||
else:
|
||||
for pred, us_peaks_ in zip(preds, us_peaks):
|
||||
raw_tokens = pred
|
||||
timestamp, timestamp_raw = time_stamp_lfr6_onnx(us_peaks_, copy.copy(raw_tokens))
|
||||
text_proc, timestamp_proc, _ = sentence_postprocess(raw_tokens, timestamp_raw)
|
||||
# logging.warning(timestamp)
|
||||
if len(self.plot_timestamp_to):
|
||||
self.plot_wave_timestamp(waveform_list[0], timestamp, self.plot_timestamp_to)
|
||||
asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens})
|
||||
return asr_res
|
||||
|
||||
def plot_wave_timestamp(self, wav, text_timestamp, dest):
|
||||
# TODO: Plot the wav and timestamp results with matplotlib
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
|
||||
ax2 = ax1.twinx()
|
||||
ax2.set_ylim([0, 2.0])
|
||||
# plot waveform
|
||||
ax1.set_ylim([-0.3, 0.3])
|
||||
time = np.arange(wav.shape[0]) / 16000
|
||||
ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4)
|
||||
# plot lines and text
|
||||
for (char, start, end) in text_timestamp:
|
||||
ax1.vlines(start, -0.3, 0.3, ls='--')
|
||||
ax1.vlines(end, -0.3, 0.3, ls='--')
|
||||
x_adj = 0.045 if char != '<sil>' else 0.12
|
||||
ax1.text((start + end) * 0.5 - x_adj, 0, char)
|
||||
# plt.legend()
|
||||
plotname = "{}/timestamp.png".format(dest)
|
||||
plt.savefig(plotname, bbox_inches='tight')
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
def load_wav(path: str) -> np.ndarray:
|
||||
waveform, _ = librosa.load(path, sr=fs)
|
||||
return waveform
|
||||
|
||||
if isinstance(wav_content, np.ndarray):
|
||||
return [wav_content]
|
||||
|
||||
if isinstance(wav_content, str):
|
||||
return [load_wav(wav_content)]
|
||||
|
||||
if isinstance(wav_content, list):
|
||||
return [load_wav(path) for path in wav_content]
|
||||
|
||||
raise TypeError(
|
||||
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
||||
|
||||
def extract_feat(self,
|
||||
waveform_list: List[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
feats, feats_len = [], []
|
||||
for waveform in waveform_list:
|
||||
speech, _ = self.frontend.fbank(waveform)
|
||||
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
||||
feats.append(feat)
|
||||
feats_len.append(feat_len)
|
||||
|
||||
feats = self.pad_feats(feats, np.max(feats_len))
|
||||
feats_len = np.array(feats_len).astype(np.int32)
|
||||
return feats, feats_len
|
||||
|
||||
@staticmethod
|
||||
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||||
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||||
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||||
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
||||
|
||||
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||||
feats = np.array(feat_res).astype(np.float32)
|
||||
return feats
|
||||
|
||||
def infer(self, feats: np.ndarray,
|
||||
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
outputs = self.ort_infer([feats, feats_len])
|
||||
return outputs
|
||||
|
||||
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
|
||||
return [self.decode_one(am_score, token_num)
|
||||
for am_score, token_num in zip(am_scores, token_nums)]
|
||||
|
||||
def decode_one(self,
|
||||
am_score: np.ndarray,
|
||||
valid_token_num: int) -> List[str]:
|
||||
yseq = am_score.argmax(axis=-1)
|
||||
score = am_score.max(axis=-1)
|
||||
score = np.sum(score, axis=-1)
|
||||
|
||||
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||||
# asr_model.sos:1 asr_model.eos:2
|
||||
yseq = np.array([1] + yseq.tolist() + [2])
|
||||
hyp = Hypothesis(yseq=yseq, score=score)
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
token = token[:valid_token_num-self.pred_bias]
|
||||
# texts = sentence_postprocess(token)
|
||||
return token
|
||||
|
||||
@ -0,0 +1,607 @@
|
||||
from enum import Enum
|
||||
from typing import List, Tuple, Dict, Any
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
class VadStateMachine(Enum):
|
||||
kVadInStateStartPointNotDetected = 1
|
||||
kVadInStateInSpeechSegment = 2
|
||||
kVadInStateEndPointDetected = 3
|
||||
|
||||
|
||||
class FrameState(Enum):
|
||||
kFrameStateInvalid = -1
|
||||
kFrameStateSpeech = 1
|
||||
kFrameStateSil = 0
|
||||
|
||||
|
||||
# final voice/unvoice state per frame
|
||||
class AudioChangeState(Enum):
|
||||
kChangeStateSpeech2Speech = 0
|
||||
kChangeStateSpeech2Sil = 1
|
||||
kChangeStateSil2Sil = 2
|
||||
kChangeStateSil2Speech = 3
|
||||
kChangeStateNoBegin = 4
|
||||
kChangeStateInvalid = 5
|
||||
|
||||
|
||||
class VadDetectMode(Enum):
|
||||
kVadSingleUtteranceDetectMode = 0
|
||||
kVadMutipleUtteranceDetectMode = 1
|
||||
|
||||
|
||||
class VADXOptions:
|
||||
def __init__(
|
||||
self,
|
||||
sample_rate: int = 16000,
|
||||
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
|
||||
snr_mode: int = 0,
|
||||
max_end_silence_time: int = 800,
|
||||
max_start_silence_time: int = 3000,
|
||||
do_start_point_detection: bool = True,
|
||||
do_end_point_detection: bool = True,
|
||||
window_size_ms: int = 200,
|
||||
sil_to_speech_time_thres: int = 150,
|
||||
speech_to_sil_time_thres: int = 150,
|
||||
speech_2_noise_ratio: float = 1.0,
|
||||
do_extend: int = 1,
|
||||
lookback_time_start_point: int = 200,
|
||||
lookahead_time_end_point: int = 100,
|
||||
max_single_segment_time: int = 60000,
|
||||
nn_eval_block_size: int = 8,
|
||||
dcd_block_size: int = 4,
|
||||
snr_thres: int = -100.0,
|
||||
noise_frame_num_used_for_snr: int = 100,
|
||||
decibel_thres: int = -100.0,
|
||||
speech_noise_thres: float = 0.6,
|
||||
fe_prior_thres: float = 1e-4,
|
||||
silence_pdf_num: int = 1,
|
||||
sil_pdf_ids: List[int] = [0],
|
||||
speech_noise_thresh_low: float = -0.1,
|
||||
speech_noise_thresh_high: float = 0.3,
|
||||
output_frame_probs: bool = False,
|
||||
frame_in_ms: int = 10,
|
||||
frame_length_ms: int = 25,
|
||||
):
|
||||
self.sample_rate = sample_rate
|
||||
self.detect_mode = detect_mode
|
||||
self.snr_mode = snr_mode
|
||||
self.max_end_silence_time = max_end_silence_time
|
||||
self.max_start_silence_time = max_start_silence_time
|
||||
self.do_start_point_detection = do_start_point_detection
|
||||
self.do_end_point_detection = do_end_point_detection
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time_thres = sil_to_speech_time_thres
|
||||
self.speech_to_sil_time_thres = speech_to_sil_time_thres
|
||||
self.speech_2_noise_ratio = speech_2_noise_ratio
|
||||
self.do_extend = do_extend
|
||||
self.lookback_time_start_point = lookback_time_start_point
|
||||
self.lookahead_time_end_point = lookahead_time_end_point
|
||||
self.max_single_segment_time = max_single_segment_time
|
||||
self.nn_eval_block_size = nn_eval_block_size
|
||||
self.dcd_block_size = dcd_block_size
|
||||
self.snr_thres = snr_thres
|
||||
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
|
||||
self.decibel_thres = decibel_thres
|
||||
self.speech_noise_thres = speech_noise_thres
|
||||
self.fe_prior_thres = fe_prior_thres
|
||||
self.silence_pdf_num = silence_pdf_num
|
||||
self.sil_pdf_ids = sil_pdf_ids
|
||||
self.speech_noise_thresh_low = speech_noise_thresh_low
|
||||
self.speech_noise_thresh_high = speech_noise_thresh_high
|
||||
self.output_frame_probs = output_frame_probs
|
||||
self.frame_in_ms = frame_in_ms
|
||||
self.frame_length_ms = frame_length_ms
|
||||
|
||||
|
||||
class E2EVadSpeechBufWithDoa(object):
|
||||
def __init__(self):
|
||||
self.start_ms = 0
|
||||
self.end_ms = 0
|
||||
self.buffer = []
|
||||
self.contain_seg_start_point = False
|
||||
self.contain_seg_end_point = False
|
||||
self.doa = 0
|
||||
|
||||
def Reset(self):
|
||||
self.start_ms = 0
|
||||
self.end_ms = 0
|
||||
self.buffer = []
|
||||
self.contain_seg_start_point = False
|
||||
self.contain_seg_end_point = False
|
||||
self.doa = 0
|
||||
|
||||
|
||||
class E2EVadFrameProb(object):
|
||||
def __init__(self):
|
||||
self.noise_prob = 0.0
|
||||
self.speech_prob = 0.0
|
||||
self.score = 0.0
|
||||
self.frame_id = 0
|
||||
self.frm_state = 0
|
||||
|
||||
|
||||
class WindowDetector(object):
|
||||
def __init__(self, window_size_ms: int, sil_to_speech_time: int,
|
||||
speech_to_sil_time: int, frame_size_ms: int):
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time = sil_to_speech_time
|
||||
self.speech_to_sil_time = speech_to_sil_time
|
||||
self.frame_size_ms = frame_size_ms
|
||||
|
||||
self.win_size_frame = int(window_size_ms / frame_size_ms)
|
||||
self.win_sum = 0
|
||||
self.win_state = [0] * self.win_size_frame # 初始化窗
|
||||
|
||||
self.cur_win_pos = 0
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
self.cur_frame_state = FrameState.kFrameStateSil
|
||||
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
|
||||
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
|
||||
|
||||
self.voice_last_frame_count = 0
|
||||
self.noise_last_frame_count = 0
|
||||
self.hydre_frame_count = 0
|
||||
|
||||
def Reset(self) -> None:
|
||||
self.cur_win_pos = 0
|
||||
self.win_sum = 0
|
||||
self.win_state = [0] * self.win_size_frame
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
self.cur_frame_state = FrameState.kFrameStateSil
|
||||
self.voice_last_frame_count = 0
|
||||
self.noise_last_frame_count = 0
|
||||
self.hydre_frame_count = 0
|
||||
|
||||
def GetWinSize(self) -> int:
|
||||
return int(self.win_size_frame)
|
||||
|
||||
def DetectOneFrame(self, frameState: FrameState, frame_count: int) -> AudioChangeState:
|
||||
cur_frame_state = FrameState.kFrameStateSil
|
||||
if frameState == FrameState.kFrameStateSpeech:
|
||||
cur_frame_state = 1
|
||||
elif frameState == FrameState.kFrameStateSil:
|
||||
cur_frame_state = 0
|
||||
else:
|
||||
return AudioChangeState.kChangeStateInvalid
|
||||
self.win_sum -= self.win_state[self.cur_win_pos]
|
||||
self.win_sum += cur_frame_state
|
||||
self.win_state[self.cur_win_pos] = cur_frame_state
|
||||
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSil and self.win_sum >= self.sil_to_speech_frmcnt_thres:
|
||||
self.pre_frame_state = FrameState.kFrameStateSpeech
|
||||
return AudioChangeState.kChangeStateSil2Speech
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSpeech and self.win_sum <= self.speech_to_sil_frmcnt_thres:
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
return AudioChangeState.kChangeStateSpeech2Sil
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSil:
|
||||
return AudioChangeState.kChangeStateSil2Sil
|
||||
if self.pre_frame_state == FrameState.kFrameStateSpeech:
|
||||
return AudioChangeState.kChangeStateSpeech2Speech
|
||||
return AudioChangeState.kChangeStateInvalid
|
||||
|
||||
def FrameSizeMs(self) -> int:
|
||||
return int(self.frame_size_ms)
|
||||
|
||||
|
||||
class E2EVadModel():
|
||||
def __init__(self, vad_post_args: Dict[str, Any]):
|
||||
super(E2EVadModel, self).__init__()
|
||||
self.vad_opts = VADXOptions(**vad_post_args)
|
||||
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
||||
self.vad_opts.sil_to_speech_time_thres,
|
||||
self.vad_opts.speech_to_sil_time_thres,
|
||||
self.vad_opts.frame_in_ms)
|
||||
# self.encoder = encoder
|
||||
# init variables
|
||||
self.is_final = False
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.ResetDetection()
|
||||
|
||||
def AllResetDetection(self):
|
||||
self.is_final = False
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.ResetDetection()
|
||||
|
||||
def ResetDetection(self):
|
||||
self.continous_silence_frame_count = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.windows_detector.Reset()
|
||||
self.sil_frame = 0
|
||||
self.frame_probs = []
|
||||
|
||||
def ComputeDecibel(self) -> None:
|
||||
frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
|
||||
frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if self.data_buf_all is None:
|
||||
self.data_buf_all = self.waveform[0] # self.data_buf is pointed to self.waveform[0]
|
||||
self.data_buf = self.data_buf_all
|
||||
else:
|
||||
self.data_buf_all = np.concatenate((self.data_buf_all, self.waveform[0]))
|
||||
for offset in range(0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
|
||||
self.decibel.append(
|
||||
10 * math.log10((self.waveform[0][offset: offset + frame_sample_length]).square().sum() + \
|
||||
0.000001))
|
||||
|
||||
def ComputeScores(self, scores: np.ndarray) -> None:
|
||||
# scores = self.encoder(feats, in_cache) # return B * T * D
|
||||
self.vad_opts.nn_eval_block_size = scores.shape[1]
|
||||
self.frm_cnt += scores.shape[1] # count total frames
|
||||
if self.scores is None:
|
||||
self.scores = scores # the first calculation
|
||||
else:
|
||||
self.scores = np.concatenate((self.scores, scores), axis=1)
|
||||
|
||||
def PopDataBufTillFrame(self, frame_idx: int) -> None: # need check again
|
||||
while self.data_buf_start_frame < frame_idx:
|
||||
if len(self.data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
self.data_buf_start_frame += 1
|
||||
self.data_buf = self.data_buf_all[self.data_buf_start_frame * int(
|
||||
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
|
||||
def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
|
||||
last_frm_is_end_point: bool, end_point_is_sent_end: bool) -> None:
|
||||
self.PopDataBufTillFrame(start_frm)
|
||||
expected_sample_number = int(frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000)
|
||||
if last_frm_is_end_point:
|
||||
extra_sample = max(0, int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 - \
|
||||
self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
|
||||
expected_sample_number += int(extra_sample)
|
||||
if end_point_is_sent_end:
|
||||
expected_sample_number = max(expected_sample_number, len(self.data_buf))
|
||||
if len(self.data_buf) < expected_sample_number:
|
||||
print('error in calling pop data_buf\n')
|
||||
|
||||
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
|
||||
self.output_data_buf.append(E2EVadSpeechBufWithDoa())
|
||||
self.output_data_buf[-1].Reset()
|
||||
self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
|
||||
self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
|
||||
self.output_data_buf[-1].doa = 0
|
||||
cur_seg = self.output_data_buf[-1]
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('warning\n')
|
||||
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
|
||||
data_to_pop = 0
|
||||
if end_point_is_sent_end:
|
||||
data_to_pop = expected_sample_number
|
||||
else:
|
||||
data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if data_to_pop > len(self.data_buf):
|
||||
print('VAD data_to_pop is bigger than self.data_buf.size()!!!\n')
|
||||
data_to_pop = len(self.data_buf)
|
||||
expected_sample_number = len(self.data_buf)
|
||||
|
||||
cur_seg.doa = 0
|
||||
for sample_cpy_out in range(0, data_to_pop):
|
||||
# cur_seg.buffer[out_pos ++] = data_buf_.back();
|
||||
out_pos += 1
|
||||
for sample_cpy_out in range(data_to_pop, expected_sample_number):
|
||||
# cur_seg.buffer[out_pos++] = data_buf_.back()
|
||||
out_pos += 1
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('Something wrong with the VAD algorithm\n')
|
||||
self.data_buf_start_frame += frm_cnt
|
||||
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
|
||||
if first_frm_is_start_point:
|
||||
cur_seg.contain_seg_start_point = True
|
||||
if last_frm_is_end_point:
|
||||
cur_seg.contain_seg_end_point = True
|
||||
|
||||
def OnSilenceDetected(self, valid_frame: int):
|
||||
self.lastest_confirmed_silence_frame = valid_frame
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataBufTillFrame(valid_frame)
|
||||
# silence_detected_callback_
|
||||
# pass
|
||||
|
||||
def OnVoiceDetected(self, valid_frame: int) -> None:
|
||||
self.latest_confirmed_speech_frame = valid_frame
|
||||
self.PopDataToOutputBuf(valid_frame, 1, False, False, False)
|
||||
|
||||
def OnVoiceStart(self, start_frame: int, fake_result: bool = False) -> None:
|
||||
if self.vad_opts.do_start_point_detection:
|
||||
pass
|
||||
if self.confirmed_start_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_start_frame = start_frame
|
||||
|
||||
if not fake_result and self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataToOutputBuf(self.confirmed_start_frame, 1, True, False, False)
|
||||
|
||||
def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool) -> None:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
|
||||
self.OnVoiceDetected(t)
|
||||
if self.vad_opts.do_end_point_detection:
|
||||
pass
|
||||
if self.confirmed_end_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_end_frame = end_frame
|
||||
if not fake_result:
|
||||
self.sil_frame = 0
|
||||
self.PopDataToOutputBuf(self.confirmed_end_frame, 1, False, True, is_last_frame)
|
||||
self.number_end_time_detected += 1
|
||||
|
||||
def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int) -> None:
|
||||
if is_final_frame:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, True)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
|
||||
def GetLatency(self) -> int:
|
||||
return int(self.LatencyFrmNumAtStartPoint() * self.vad_opts.frame_in_ms)
|
||||
|
||||
def LatencyFrmNumAtStartPoint(self) -> int:
|
||||
vad_latency = self.windows_detector.GetWinSize()
|
||||
if self.vad_opts.do_extend:
|
||||
vad_latency += int(self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms)
|
||||
return vad_latency
|
||||
|
||||
def GetFrameState(self, t: int) -> FrameState:
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
cur_decibel = self.decibel[t]
|
||||
cur_snr = cur_decibel - self.noise_average_decibel
|
||||
# for each frame, calc log posterior probability of each state
|
||||
if cur_decibel < self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
self.DetectOneFrame(frame_state, t, False)
|
||||
return frame_state
|
||||
|
||||
sum_score = 0.0
|
||||
noise_prob = 0.0
|
||||
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
|
||||
if len(self.sil_pdf_ids) > 0:
|
||||
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
|
||||
sil_pdf_scores = [self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
|
||||
sum_score = sum(sil_pdf_scores)
|
||||
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
|
||||
total_score = 1.0
|
||||
sum_score = total_score - sum_score
|
||||
speech_prob = math.log(sum_score)
|
||||
if self.vad_opts.output_frame_probs:
|
||||
frame_prob = E2EVadFrameProb()
|
||||
frame_prob.noise_prob = noise_prob
|
||||
frame_prob.speech_prob = speech_prob
|
||||
frame_prob.score = sum_score
|
||||
frame_prob.frame_id = t
|
||||
self.frame_probs.append(frame_prob)
|
||||
if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
|
||||
if cur_snr >= self.vad_opts.snr_thres and cur_decibel >= self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
if self.noise_average_decibel < -99.9:
|
||||
self.noise_average_decibel = cur_decibel
|
||||
else:
|
||||
self.noise_average_decibel = (cur_decibel + self.noise_average_decibel * (
|
||||
self.vad_opts.noise_frame_num_used_for_snr
|
||||
- 1)) / self.vad_opts.noise_frame_num_used_for_snr
|
||||
|
||||
return frame_state
|
||||
|
||||
|
||||
def __call__(self, score: np.ndarray, waveform: np.ndarray,
|
||||
is_final: bool = False, max_end_sil: int = 800
|
||||
):
|
||||
self.max_end_sil_frame_cnt_thresh = max_end_sil - self.vad_opts.speech_to_sil_time_thres
|
||||
self.waveform = waveform # compute decibel for each frame
|
||||
self.ComputeDecibel()
|
||||
self.ComputeScores(score)
|
||||
if not is_final:
|
||||
self.DetectCommonFrames()
|
||||
else:
|
||||
self.DetectLastFrames()
|
||||
segments = []
|
||||
for batch_num in range(0, score.shape[0]): # only support batch_size = 1 now
|
||||
segment_batch = []
|
||||
if len(self.output_data_buf) > 0:
|
||||
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
|
||||
if not self.output_data_buf[i].contain_seg_start_point:
|
||||
continue
|
||||
if not self.next_seg and not self.output_data_buf[i].contain_seg_end_point:
|
||||
continue
|
||||
start_ms = self.output_data_buf[i].start_ms if self.next_seg else -1
|
||||
if self.output_data_buf[i].contain_seg_end_point:
|
||||
end_ms = self.output_data_buf[i].end_ms
|
||||
self.next_seg = True
|
||||
self.output_data_buf_offset += 1
|
||||
else:
|
||||
end_ms = -1
|
||||
self.next_seg = False
|
||||
segment = [start_ms, end_ms]
|
||||
segment_batch.append(segment)
|
||||
if segment_batch:
|
||||
segments.append(segment_batch)
|
||||
if is_final:
|
||||
# reset class variables and clear the dict for the next query
|
||||
self.AllResetDetection()
|
||||
return segments
|
||||
|
||||
def DetectCommonFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectLastFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
|
||||
if i != 0:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
else:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1, True)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateInvalid
|
||||
if cur_frm_state == FrameState.kFrameStateSpeech:
|
||||
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
elif cur_frm_state == FrameState.kFrameStateSil:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
state_change = self.windows_detector.DetectOneFrame(tmp_cur_frm_state, cur_frm_idx)
|
||||
frm_shift_in_ms = self.vad_opts.frame_in_ms
|
||||
if AudioChangeState.kChangeStateSil2Speech == state_change:
|
||||
silence_frame_count = self.continous_silence_frame_count
|
||||
self.continous_silence_frame_count = 0
|
||||
self.pre_end_silence_detected = False
|
||||
start_frame = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
start_frame = max(self.data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
self.OnVoiceStart(start_frame)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
|
||||
for t in range(start_frame + 1, cur_frm_idx + 1):
|
||||
self.OnVoiceDetected(t)
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
|
||||
self.OnVoiceDetected(t)
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
pass
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.max_time_out = True
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSil2Sil == state_change:
|
||||
self.continous_silence_frame_count += 1
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
# silence timeout, return zero length decision
|
||||
if ((self.vad_opts.detect_mode == VadDetectMode.kVadSingleUtteranceDetectMode.value) and (
|
||||
self.continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
|
||||
or (is_final_frame and self.number_end_time_detected == 0):
|
||||
for t in range(self.lastest_confirmed_silence_frame + 1, cur_frm_idx):
|
||||
self.OnSilenceDetected(t)
|
||||
self.OnVoiceStart(0, True)
|
||||
self.OnVoiceEnd(0, True, False);
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
else:
|
||||
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint():
|
||||
self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if self.continous_silence_frame_count * frm_shift_in_ms >= self.max_end_sil_frame_cnt_thresh:
|
||||
lookback_frame = int(self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
|
||||
if self.vad_opts.do_extend:
|
||||
lookback_frame -= int(self.vad_opts.lookahead_time_end_point / frm_shift_in_ms)
|
||||
lookback_frame -= 1
|
||||
lookback_frame = max(0, lookback_frame)
|
||||
self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif self.vad_opts.do_extend and not is_final_frame:
|
||||
if self.continous_silence_frame_count <= int(
|
||||
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms):
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
|
||||
self.vad_opts.detect_mode == VadDetectMode.kVadMutipleUtteranceDetectMode.value:
|
||||
self.ResetDetection()
|
||||
@ -0,0 +1,191 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
from typeguard import check_argument_types
|
||||
import kaldi_native_fbank as knf
|
||||
|
||||
root_dir = Path(__file__).resolve().parent
|
||||
|
||||
logger_initialized = {}
|
||||
|
||||
|
||||
class WavFrontend():
|
||||
"""Conventional frontend structure for ASR.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cmvn_file: str = None,
|
||||
fs: int = 16000,
|
||||
window: str = 'hamming',
|
||||
n_mels: int = 80,
|
||||
frame_length: int = 25,
|
||||
frame_shift: int = 10,
|
||||
lfr_m: int = 1,
|
||||
lfr_n: int = 1,
|
||||
dither: float = 1.0,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
check_argument_types()
|
||||
|
||||
opts = knf.FbankOptions()
|
||||
opts.frame_opts.samp_freq = fs
|
||||
opts.frame_opts.dither = dither
|
||||
opts.frame_opts.window_type = window
|
||||
opts.frame_opts.frame_shift_ms = float(frame_shift)
|
||||
opts.frame_opts.frame_length_ms = float(frame_length)
|
||||
opts.mel_opts.num_bins = n_mels
|
||||
opts.energy_floor = 0
|
||||
opts.frame_opts.snip_edges = True
|
||||
opts.mel_opts.debug_mel = False
|
||||
self.opts = opts
|
||||
|
||||
self.lfr_m = lfr_m
|
||||
self.lfr_n = lfr_n
|
||||
self.cmvn_file = cmvn_file
|
||||
|
||||
if self.cmvn_file:
|
||||
self.cmvn = self.load_cmvn()
|
||||
self.fbank_fn = None
|
||||
self.fbank_beg_idx = 0
|
||||
self.reset_status()
|
||||
|
||||
def fbank(self,
|
||||
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
waveform = waveform * (1 << 15)
|
||||
self.fbank_fn = knf.OnlineFbank(self.opts)
|
||||
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
||||
frames = self.fbank_fn.num_frames_ready
|
||||
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
||||
for i in range(frames):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
feat = mat.astype(np.float32)
|
||||
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
def fbank_online(self,
|
||||
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
waveform = waveform * (1 << 15)
|
||||
# self.fbank_fn = knf.OnlineFbank(self.opts)
|
||||
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
||||
frames = self.fbank_fn.num_frames_ready
|
||||
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
||||
for i in range(self.fbank_beg_idx, frames):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
|
||||
feat = mat.astype(np.float32)
|
||||
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
def reset_status(self):
|
||||
self.fbank_fn = knf.OnlineFbank(self.opts)
|
||||
self.fbank_beg_idx = 0
|
||||
|
||||
def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
if self.lfr_m != 1 or self.lfr_n != 1:
|
||||
feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n)
|
||||
|
||||
if self.cmvn_file:
|
||||
feat = self.apply_cmvn(feat)
|
||||
|
||||
feat_len = np.array(feat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
@staticmethod
|
||||
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
|
||||
LFR_inputs = []
|
||||
|
||||
T = inputs.shape[0]
|
||||
T_lfr = int(np.ceil(T / lfr_n))
|
||||
left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
|
||||
inputs = np.vstack((left_padding, inputs))
|
||||
T = T + (lfr_m - 1) // 2
|
||||
for i in range(T_lfr):
|
||||
if lfr_m <= T - i * lfr_n:
|
||||
LFR_inputs.append(
|
||||
(inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1))
|
||||
else:
|
||||
# process last LFR frame
|
||||
num_padding = lfr_m - (T - i * lfr_n)
|
||||
frame = inputs[i * lfr_n:].reshape(-1)
|
||||
for _ in range(num_padding):
|
||||
frame = np.hstack((frame, inputs[-1]))
|
||||
|
||||
LFR_inputs.append(frame)
|
||||
LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
|
||||
return LFR_outputs
|
||||
|
||||
def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Apply CMVN with mvn data
|
||||
"""
|
||||
frame, dim = inputs.shape
|
||||
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
|
||||
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
|
||||
inputs = (inputs + means) * vars
|
||||
return inputs
|
||||
|
||||
def load_cmvn(self,) -> np.ndarray:
|
||||
with open(self.cmvn_file, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
means_list = []
|
||||
vars_list = []
|
||||
for i in range(len(lines)):
|
||||
line_item = lines[i].split()
|
||||
if line_item[0] == '<AddShift>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
add_shift_line = line_item[3:(len(line_item) - 1)]
|
||||
means_list = list(add_shift_line)
|
||||
continue
|
||||
elif line_item[0] == '<Rescale>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
rescale_line = line_item[3:(len(line_item) - 1)]
|
||||
vars_list = list(rescale_line)
|
||||
continue
|
||||
|
||||
means = np.array(means_list).astype(np.float64)
|
||||
vars = np.array(vars_list).astype(np.float64)
|
||||
cmvn = np.array([means, vars])
|
||||
return cmvn
|
||||
|
||||
def load_bytes(input):
|
||||
middle_data = np.frombuffer(input, dtype=np.int16)
|
||||
middle_data = np.asarray(middle_data)
|
||||
if middle_data.dtype.kind not in 'iu':
|
||||
raise TypeError("'middle_data' must be an array of integers")
|
||||
dtype = np.dtype('float32')
|
||||
if dtype.kind != 'f':
|
||||
raise TypeError("'dtype' must be a floating point type")
|
||||
|
||||
i = np.iinfo(middle_data.dtype)
|
||||
abs_max = 2 ** (i.bits - 1)
|
||||
offset = i.min + abs_max
|
||||
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
||||
return array
|
||||
|
||||
|
||||
def test():
|
||||
path = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav"
|
||||
import librosa
|
||||
cmvn_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/am.mvn"
|
||||
config_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/config.yaml"
|
||||
from funasr.runtime.python.onnxruntime.rapid_paraformer.utils.utils import read_yaml
|
||||
config = read_yaml(config_file)
|
||||
waveform, _ = librosa.load(path, sr=None)
|
||||
frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf'],
|
||||
)
|
||||
speech, _ = frontend.fbank_online(waveform) #1d, (sample,), numpy
|
||||
feat, feat_len = frontend.lfr_cmvn(speech) # 2d, (frame, 450), np.float32 -> torch, torch.from_numpy(), dtype, (1, frame, 450)
|
||||
|
||||
frontend.reset_status() # clear cache
|
||||
return feat, feat_len
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
@ -0,0 +1,240 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import string
|
||||
import logging
|
||||
from typing import Any, List, Union
|
||||
|
||||
|
||||
def isChinese(ch: str):
|
||||
if '\u4e00' <= ch <= '\u9fff' or '\u0030' <= ch <= '\u0039':
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def isAllChinese(word: Union[List[Any], str]):
|
||||
word_lists = []
|
||||
for i in word:
|
||||
cur = i.replace(' ', '')
|
||||
cur = cur.replace('</s>', '')
|
||||
cur = cur.replace('<s>', '')
|
||||
word_lists.append(cur)
|
||||
|
||||
if len(word_lists) == 0:
|
||||
return False
|
||||
|
||||
for ch in word_lists:
|
||||
if isChinese(ch) is False:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def isAllAlpha(word: Union[List[Any], str]):
|
||||
word_lists = []
|
||||
for i in word:
|
||||
cur = i.replace(' ', '')
|
||||
cur = cur.replace('</s>', '')
|
||||
cur = cur.replace('<s>', '')
|
||||
word_lists.append(cur)
|
||||
|
||||
if len(word_lists) == 0:
|
||||
return False
|
||||
|
||||
for ch in word_lists:
|
||||
if ch.isalpha() is False and ch != "'":
|
||||
return False
|
||||
elif ch.isalpha() is True and isChinese(ch) is True:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# def abbr_dispose(words: List[Any]) -> List[Any]:
|
||||
def abbr_dispose(words: List[Any], time_stamp: List[List] = None) -> List[Any]:
|
||||
words_size = len(words)
|
||||
word_lists = []
|
||||
abbr_begin = []
|
||||
abbr_end = []
|
||||
last_num = -1
|
||||
ts_lists = []
|
||||
ts_nums = []
|
||||
ts_index = 0
|
||||
for num in range(words_size):
|
||||
if num <= last_num:
|
||||
continue
|
||||
|
||||
if len(words[num]) == 1 and words[num].encode('utf-8').isalpha():
|
||||
if num + 1 < words_size and words[
|
||||
num + 1] == ' ' and num + 2 < words_size and len(
|
||||
words[num +
|
||||
2]) == 1 and words[num +
|
||||
2].encode('utf-8').isalpha():
|
||||
# found the begin of abbr
|
||||
abbr_begin.append(num)
|
||||
num += 2
|
||||
abbr_end.append(num)
|
||||
# to find the end of abbr
|
||||
while True:
|
||||
num += 1
|
||||
if num < words_size and words[num] == ' ':
|
||||
num += 1
|
||||
if num < words_size and len(
|
||||
words[num]) == 1 and words[num].encode(
|
||||
'utf-8').isalpha():
|
||||
abbr_end.pop()
|
||||
abbr_end.append(num)
|
||||
last_num = num
|
||||
else:
|
||||
break
|
||||
else:
|
||||
break
|
||||
|
||||
for num in range(words_size):
|
||||
if words[num] == ' ':
|
||||
ts_nums.append(ts_index)
|
||||
else:
|
||||
ts_nums.append(ts_index)
|
||||
ts_index += 1
|
||||
last_num = -1
|
||||
for num in range(words_size):
|
||||
if num <= last_num:
|
||||
continue
|
||||
|
||||
if num in abbr_begin:
|
||||
if time_stamp is not None:
|
||||
begin = time_stamp[ts_nums[num]][0]
|
||||
word_lists.append(words[num].upper())
|
||||
num += 1
|
||||
while num < words_size:
|
||||
if num in abbr_end:
|
||||
word_lists.append(words[num].upper())
|
||||
last_num = num
|
||||
break
|
||||
else:
|
||||
if words[num].encode('utf-8').isalpha():
|
||||
word_lists.append(words[num].upper())
|
||||
num += 1
|
||||
if time_stamp is not None:
|
||||
end = time_stamp[ts_nums[num]][1]
|
||||
ts_lists.append([begin, end])
|
||||
else:
|
||||
word_lists.append(words[num])
|
||||
if time_stamp is not None and words[num] != ' ':
|
||||
begin = time_stamp[ts_nums[num]][0]
|
||||
end = time_stamp[ts_nums[num]][1]
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
|
||||
if time_stamp is not None:
|
||||
return word_lists, ts_lists
|
||||
else:
|
||||
return word_lists
|
||||
|
||||
|
||||
def sentence_postprocess(words: List[Any], time_stamp: List[List] = None):
|
||||
middle_lists = []
|
||||
word_lists = []
|
||||
word_item = ''
|
||||
ts_lists = []
|
||||
|
||||
# wash words lists
|
||||
for i in words:
|
||||
word = ''
|
||||
if isinstance(i, str):
|
||||
word = i
|
||||
else:
|
||||
word = i.decode('utf-8')
|
||||
|
||||
if word in ['<s>', '</s>', '<unk>']:
|
||||
continue
|
||||
else:
|
||||
middle_lists.append(word)
|
||||
|
||||
# all chinese characters
|
||||
if isAllChinese(middle_lists):
|
||||
for i, ch in enumerate(middle_lists):
|
||||
word_lists.append(ch.replace(' ', ''))
|
||||
if time_stamp is not None:
|
||||
ts_lists = time_stamp
|
||||
|
||||
# all alpha characters
|
||||
elif isAllAlpha(middle_lists):
|
||||
ts_flag = True
|
||||
for i, ch in enumerate(middle_lists):
|
||||
if ts_flag and time_stamp is not None:
|
||||
begin = time_stamp[i][0]
|
||||
end = time_stamp[i][1]
|
||||
word = ''
|
||||
if '@@' in ch:
|
||||
word = ch.replace('@@', '')
|
||||
word_item += word
|
||||
if time_stamp is not None:
|
||||
ts_flag = False
|
||||
end = time_stamp[i][1]
|
||||
else:
|
||||
word_item += ch
|
||||
word_lists.append(word_item)
|
||||
word_lists.append(' ')
|
||||
word_item = ''
|
||||
if time_stamp is not None:
|
||||
ts_flag = True
|
||||
end = time_stamp[i][1]
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
|
||||
# mix characters
|
||||
else:
|
||||
alpha_blank = False
|
||||
ts_flag = True
|
||||
begin = -1
|
||||
end = -1
|
||||
for i, ch in enumerate(middle_lists):
|
||||
if ts_flag and time_stamp is not None:
|
||||
begin = time_stamp[i][0]
|
||||
end = time_stamp[i][1]
|
||||
word = ''
|
||||
if isAllChinese(ch):
|
||||
if alpha_blank is True:
|
||||
word_lists.pop()
|
||||
word_lists.append(ch)
|
||||
alpha_blank = False
|
||||
if time_stamp is not None:
|
||||
ts_flag = True
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
elif '@@' in ch:
|
||||
word = ch.replace('@@', '')
|
||||
word_item += word
|
||||
alpha_blank = False
|
||||
if time_stamp is not None:
|
||||
ts_flag = False
|
||||
end = time_stamp[i][1]
|
||||
elif isAllAlpha(ch):
|
||||
word_item += ch
|
||||
word_lists.append(word_item)
|
||||
word_lists.append(' ')
|
||||
word_item = ''
|
||||
alpha_blank = True
|
||||
if time_stamp is not None:
|
||||
ts_flag = True
|
||||
end = time_stamp[i][1]
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
else:
|
||||
raise ValueError('invalid character: {}'.format(ch))
|
||||
|
||||
if time_stamp is not None:
|
||||
word_lists, ts_lists = abbr_dispose(word_lists, ts_lists)
|
||||
real_word_lists = []
|
||||
for ch in word_lists:
|
||||
if ch != ' ':
|
||||
real_word_lists.append(ch)
|
||||
sentence = ' '.join(real_word_lists).strip()
|
||||
return sentence, ts_lists, real_word_lists
|
||||
else:
|
||||
word_lists = abbr_dispose(word_lists)
|
||||
real_word_lists = []
|
||||
for ch in word_lists:
|
||||
if ch != ' ':
|
||||
real_word_lists.append(ch)
|
||||
sentence = ''.join(word_lists).strip()
|
||||
return sentence, real_word_lists
|
||||
@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def time_stamp_lfr6_onnx(us_cif_peak, char_list, begin_time=0.0, total_offset=-1.5):
|
||||
if not len(char_list):
|
||||
return []
|
||||
START_END_THRESHOLD = 5
|
||||
MAX_TOKEN_DURATION = 30
|
||||
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
|
||||
cif_peak = us_cif_peak.reshape(-1)
|
||||
num_frames = cif_peak.shape[-1]
|
||||
if char_list[-1] == '</s>':
|
||||
char_list = char_list[:-1]
|
||||
# char_list = [i for i in text]
|
||||
timestamp_list = []
|
||||
new_char_list = []
|
||||
# for bicif model trained with large data, cif2 actually fires when a character starts
|
||||
# so treat the frames between two peaks as the duration of the former token
|
||||
fire_place = np.where(cif_peak>1.0-1e-4)[0] + total_offset # np format
|
||||
num_peak = len(fire_place)
|
||||
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
|
||||
# begin silence
|
||||
if fire_place[0] > START_END_THRESHOLD:
|
||||
# char_list.insert(0, '<sil>')
|
||||
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
|
||||
new_char_list.append('<sil>')
|
||||
# tokens timestamp
|
||||
for i in range(len(fire_place)-1):
|
||||
new_char_list.append(char_list[i])
|
||||
if i == len(fire_place)-2 or MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] < MAX_TOKEN_DURATION:
|
||||
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
||||
else:
|
||||
# cut the duration to token and sil of the 0-weight frames last long
|
||||
_split = fire_place[i] + MAX_TOKEN_DURATION
|
||||
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
|
||||
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
||||
new_char_list.append('<sil>')
|
||||
# tail token and end silence
|
||||
if num_frames - fire_place[-1] > START_END_THRESHOLD:
|
||||
_end = (num_frames + fire_place[-1]) / 2
|
||||
timestamp_list[-1][1] = _end*TIME_RATE
|
||||
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
|
||||
new_char_list.append("<sil>")
|
||||
else:
|
||||
timestamp_list[-1][1] = num_frames*TIME_RATE
|
||||
if begin_time: # add offset time in model with vad
|
||||
for i in range(len(timestamp_list)):
|
||||
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
|
||||
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
|
||||
assert len(new_char_list) == len(timestamp_list)
|
||||
res_str = ""
|
||||
for char, timestamp in zip(new_char_list, timestamp_list):
|
||||
res_str += "{} {} {};".format(char, timestamp[0], timestamp[1])
|
||||
res = []
|
||||
for char, timestamp in zip(new_char_list, timestamp_list):
|
||||
if char != '<sil>':
|
||||
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
|
||||
return res_str, res
|
||||
|
||||
@ -0,0 +1,257 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import functools
|
||||
import logging
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
from onnxruntime import (GraphOptimizationLevel, InferenceSession,
|
||||
SessionOptions, get_available_providers, get_device)
|
||||
from typeguard import check_argument_types
|
||||
|
||||
import warnings
|
||||
|
||||
root_dir = Path(__file__).resolve().parent
|
||||
|
||||
logger_initialized = {}
|
||||
|
||||
|
||||
class TokenIDConverter():
|
||||
def __init__(self, token_list: Union[List, str],
|
||||
):
|
||||
check_argument_types()
|
||||
|
||||
# self.token_list = self.load_token(token_path)
|
||||
self.token_list = token_list
|
||||
self.unk_symbol = token_list[-1]
|
||||
|
||||
# @staticmethod
|
||||
# def load_token(file_path: Union[Path, str]) -> List:
|
||||
# if not Path(file_path).exists():
|
||||
# raise TokenIDConverterError(f'The {file_path} does not exist.')
|
||||
#
|
||||
# with open(str(file_path), 'rb') as f:
|
||||
# token_list = pickle.load(f)
|
||||
#
|
||||
# if len(token_list) != len(set(token_list)):
|
||||
# raise TokenIDConverterError('The Token exists duplicated symbol.')
|
||||
# return token_list
|
||||
|
||||
def get_num_vocabulary_size(self) -> int:
|
||||
return len(self.token_list)
|
||||
|
||||
def ids2tokens(self,
|
||||
integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
|
||||
if isinstance(integers, np.ndarray) and integers.ndim != 1:
|
||||
raise TokenIDConverterError(
|
||||
f"Must be 1 dim ndarray, but got {integers.ndim}")
|
||||
return [self.token_list[i] for i in integers]
|
||||
|
||||
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
|
||||
token2id = {v: i for i, v in enumerate(self.token_list)}
|
||||
if self.unk_symbol not in token2id:
|
||||
raise TokenIDConverterError(
|
||||
f"Unknown symbol '{self.unk_symbol}' doesn't exist in the token_list"
|
||||
)
|
||||
unk_id = token2id[self.unk_symbol]
|
||||
return [token2id.get(i, unk_id) for i in tokens]
|
||||
|
||||
|
||||
class CharTokenizer():
|
||||
def __init__(
|
||||
self,
|
||||
symbol_value: Union[Path, str, Iterable[str]] = None,
|
||||
space_symbol: str = "<space>",
|
||||
remove_non_linguistic_symbols: bool = False,
|
||||
):
|
||||
check_argument_types()
|
||||
|
||||
self.space_symbol = space_symbol
|
||||
self.non_linguistic_symbols = self.load_symbols(symbol_value)
|
||||
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
|
||||
|
||||
@staticmethod
|
||||
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
|
||||
if value is None:
|
||||
return set()
|
||||
|
||||
if isinstance(value, Iterable[str]):
|
||||
return set(value)
|
||||
|
||||
file_path = Path(value)
|
||||
if not file_path.exists():
|
||||
logging.warning("%s doesn't exist.", file_path)
|
||||
return set()
|
||||
|
||||
with file_path.open("r", encoding="utf-8") as f:
|
||||
return set(line.rstrip() for line in f)
|
||||
|
||||
def text2tokens(self, line: Union[str, list]) -> List[str]:
|
||||
tokens = []
|
||||
while len(line) != 0:
|
||||
for w in self.non_linguistic_symbols:
|
||||
if line.startswith(w):
|
||||
if not self.remove_non_linguistic_symbols:
|
||||
tokens.append(line[: len(w)])
|
||||
line = line[len(w):]
|
||||
break
|
||||
else:
|
||||
t = line[0]
|
||||
if t == " ":
|
||||
t = "<space>"
|
||||
tokens.append(t)
|
||||
line = line[1:]
|
||||
return tokens
|
||||
|
||||
def tokens2text(self, tokens: Iterable[str]) -> str:
|
||||
tokens = [t if t != self.space_symbol else " " for t in tokens]
|
||||
return "".join(tokens)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}("
|
||||
f'space_symbol="{self.space_symbol}"'
|
||||
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
|
||||
f")"
|
||||
)
|
||||
|
||||
|
||||
|
||||
class Hypothesis(NamedTuple):
|
||||
"""Hypothesis data type."""
|
||||
|
||||
yseq: np.ndarray
|
||||
score: Union[float, np.ndarray] = 0
|
||||
scores: Dict[str, Union[float, np.ndarray]] = dict()
|
||||
states: Dict[str, Any] = dict()
|
||||
|
||||
def asdict(self) -> dict:
|
||||
"""Convert data to JSON-friendly dict."""
|
||||
return self._replace(
|
||||
yseq=self.yseq.tolist(),
|
||||
score=float(self.score),
|
||||
scores={k: float(v) for k, v in self.scores.items()},
|
||||
)._asdict()
|
||||
|
||||
|
||||
class TokenIDConverterError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ONNXRuntimeError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class OrtInferSession():
|
||||
def __init__(self, model_file, device_id=-1, intra_op_num_threads=4):
|
||||
device_id = str(device_id)
|
||||
sess_opt = SessionOptions()
|
||||
sess_opt.intra_op_num_threads = intra_op_num_threads
|
||||
sess_opt.log_severity_level = 4
|
||||
sess_opt.enable_cpu_mem_arena = False
|
||||
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
|
||||
cuda_ep = 'CUDAExecutionProvider'
|
||||
cuda_provider_options = {
|
||||
"device_id": device_id,
|
||||
"arena_extend_strategy": "kNextPowerOfTwo",
|
||||
"cudnn_conv_algo_search": "EXHAUSTIVE",
|
||||
"do_copy_in_default_stream": "true",
|
||||
}
|
||||
cpu_ep = 'CPUExecutionProvider'
|
||||
cpu_provider_options = {
|
||||
"arena_extend_strategy": "kSameAsRequested",
|
||||
}
|
||||
|
||||
EP_list = []
|
||||
if device_id != "-1" and get_device() == 'GPU' \
|
||||
and cuda_ep in get_available_providers():
|
||||
EP_list = [(cuda_ep, cuda_provider_options)]
|
||||
EP_list.append((cpu_ep, cpu_provider_options))
|
||||
|
||||
self._verify_model(model_file)
|
||||
self.session = InferenceSession(model_file,
|
||||
sess_options=sess_opt,
|
||||
providers=EP_list)
|
||||
|
||||
if device_id != "-1" and cuda_ep not in self.session.get_providers():
|
||||
warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
|
||||
'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
|
||||
'you can check their relations from the offical web site: '
|
||||
'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
|
||||
RuntimeWarning)
|
||||
|
||||
def __call__(self,
|
||||
input_content: List[Union[np.ndarray, np.ndarray]]) -> np.ndarray:
|
||||
input_dict = dict(zip(self.get_input_names(), input_content))
|
||||
try:
|
||||
return self.session.run(None, input_dict)
|
||||
except Exception as e:
|
||||
raise ONNXRuntimeError('ONNXRuntime inferece failed.') from e
|
||||
|
||||
def get_input_names(self, ):
|
||||
return [v.name for v in self.session.get_inputs()]
|
||||
|
||||
def get_output_names(self,):
|
||||
return [v.name for v in self.session.get_outputs()]
|
||||
|
||||
def get_character_list(self, key: str = 'character'):
|
||||
return self.meta_dict[key].splitlines()
|
||||
|
||||
def have_key(self, key: str = 'character') -> bool:
|
||||
self.meta_dict = self.session.get_modelmeta().custom_metadata_map
|
||||
if key in self.meta_dict.keys():
|
||||
return True
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _verify_model(model_path):
|
||||
model_path = Path(model_path)
|
||||
if not model_path.exists():
|
||||
raise FileNotFoundError(f'{model_path} does not exists.')
|
||||
if not model_path.is_file():
|
||||
raise FileExistsError(f'{model_path} is not a file.')
|
||||
|
||||
|
||||
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
|
||||
if not Path(yaml_path).exists():
|
||||
raise FileExistsError(f'The {yaml_path} does not exist.')
|
||||
|
||||
with open(str(yaml_path), 'rb') as f:
|
||||
data = yaml.load(f, Loader=yaml.Loader)
|
||||
return data
|
||||
|
||||
|
||||
@functools.lru_cache()
|
||||
def get_logger(name='rapdi_paraformer'):
|
||||
"""Initialize and get a logger by name.
|
||||
If the logger has not been initialized, this method will initialize the
|
||||
logger by adding one or two handlers, otherwise the initialized logger will
|
||||
be directly returned. During initialization, a StreamHandler will always be
|
||||
added.
|
||||
Args:
|
||||
name (str): Logger name.
|
||||
Returns:
|
||||
logging.Logger: The expected logger.
|
||||
"""
|
||||
logger = logging.getLogger(name)
|
||||
if name in logger_initialized:
|
||||
return logger
|
||||
|
||||
for logger_name in logger_initialized:
|
||||
if name.startswith(logger_name):
|
||||
return logger
|
||||
|
||||
formatter = logging.Formatter(
|
||||
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
|
||||
datefmt="%Y/%m/%d %H:%M:%S")
|
||||
|
||||
sh = logging.StreamHandler()
|
||||
sh.setFormatter(formatter)
|
||||
logger.addHandler(sh)
|
||||
logger_initialized[name] = True
|
||||
logger.propagate = False
|
||||
return logger
|
||||
@ -0,0 +1,166 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
|
||||
import copy
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
from .utils.utils import (CharTokenizer, Hypothesis, ONNXRuntimeError,
|
||||
OrtInferSession, TokenIDConverter, get_logger,
|
||||
read_yaml)
|
||||
from .utils.postprocess_utils import sentence_postprocess
|
||||
from .utils.frontend import WavFrontend
|
||||
from .utils.timestamp_utils import time_stamp_lfr6_onnx
|
||||
from .utils.e2e_vad import E2EVadModel
|
||||
|
||||
logging = get_logger()
|
||||
|
||||
|
||||
class Fsmn_vad():
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4,
|
||||
max_end_sil: int = 800,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.onnx')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||||
config_file = os.path.join(model_dir, 'vad.yaml')
|
||||
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf']
|
||||
)
|
||||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||||
self.batch_size = batch_size
|
||||
self.vad_scorer = E2EVadModel(**config)
|
||||
self.max_end_sil = max_end_sil
|
||||
|
||||
def prepare_cache(self, in_cache: list = []):
|
||||
if len(in_cache) > 0:
|
||||
return in_cache
|
||||
|
||||
for i in range(4):
|
||||
cache = np.random.rand(1, 128, 19, 1).astype(np.float32)
|
||||
in_cache.append(cache)
|
||||
return in_cache
|
||||
|
||||
|
||||
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
is_final = kwargs.get('kwargs', False)
|
||||
|
||||
asr_res = []
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
waveform = waveform_list[beg_idx:end_idx]
|
||||
feats, feats_len = self.extract_feat(waveform)
|
||||
param_dict = kwargs.get('param_dict', dict())
|
||||
in_cache = param_dict.get('cache', list())
|
||||
in_cache = self.prepare_cache(in_cache)
|
||||
try:
|
||||
|
||||
scores, out_caches = self.infer(feats, *in_cache)
|
||||
param_dict['cache'] = out_caches
|
||||
segments = self.vad_scorer(scores, waveform, is_final=is_final, max_end_sil=self.max_end_sil)
|
||||
|
||||
except ONNXRuntimeError:
|
||||
# logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
segments = ''
|
||||
asr_res.append(segments)
|
||||
# else:
|
||||
# preds = self.decode(am_scores, valid_token_lens)
|
||||
#
|
||||
# asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens})
|
||||
|
||||
return asr_res
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
def load_wav(path: str) -> np.ndarray:
|
||||
waveform, _ = librosa.load(path, sr=fs)
|
||||
return waveform
|
||||
|
||||
if isinstance(wav_content, np.ndarray):
|
||||
return [wav_content]
|
||||
|
||||
if isinstance(wav_content, str):
|
||||
return [load_wav(wav_content)]
|
||||
|
||||
if isinstance(wav_content, list):
|
||||
return [load_wav(path) for path in wav_content]
|
||||
|
||||
raise TypeError(
|
||||
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
||||
|
||||
def extract_feat(self,
|
||||
waveform_list: List[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
feats, feats_len = [], []
|
||||
for waveform in waveform_list:
|
||||
speech, _ = self.frontend.fbank(waveform)
|
||||
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
||||
feats.append(feat)
|
||||
feats_len.append(feat_len)
|
||||
|
||||
feats = self.pad_feats(feats, np.max(feats_len))
|
||||
feats_len = np.array(feats_len).astype(np.int32)
|
||||
return feats, feats_len
|
||||
|
||||
@staticmethod
|
||||
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||||
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||||
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||||
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
||||
|
||||
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||||
feats = np.array(feat_res).astype(np.float32)
|
||||
return feats
|
||||
|
||||
def infer(self, feats: np.ndarray,
|
||||
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
outputs = self.ort_infer([feats, feats_len])
|
||||
return outputs
|
||||
|
||||
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
|
||||
return [self.decode_one(am_score, token_num)
|
||||
for am_score, token_num in zip(am_scores, token_nums)]
|
||||
|
||||
def decode_one(self,
|
||||
am_score: np.ndarray,
|
||||
valid_token_num: int) -> List[str]:
|
||||
yseq = am_score.argmax(axis=-1)
|
||||
score = am_score.max(axis=-1)
|
||||
score = np.sum(score, axis=-1)
|
||||
|
||||
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||||
# asr_model.sos:1 asr_model.eos:2
|
||||
yseq = np.array([1] + yseq.tolist() + [2])
|
||||
hyp = Hypothesis(yseq=yseq, score=score)
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
token = token[:valid_token_num - self.pred_bias]
|
||||
# texts = sentence_postprocess(token)
|
||||
return token
|
||||
@ -1,8 +1,6 @@
|
||||
|
||||
from funasr_onnx import Paraformer
|
||||
|
||||
#model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
#model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
model_dir = "/Users/shixian/code/funasr/export/damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch"
|
||||
|
||||
# if you use paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch, you should set pred_bias=0
|
||||
|
||||
12
funasr/runtime/python/onnxruntime/demo_vad.py
Normal file
12
funasr/runtime/python/onnxruntime/demo_vad.py
Normal file
@ -0,0 +1,12 @@
|
||||
|
||||
from funasr_onnx import Fsmn_vad
|
||||
|
||||
|
||||
model_dir = "/Users/zhifu/Downloads/speech_fsmn_vad_zh-cn-16k-common-pytorch"
|
||||
|
||||
model = Fsmn_vad(model_dir)
|
||||
|
||||
wav_path = "/Users/zhifu/Downloads/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav"
|
||||
|
||||
result = model(wav_path)
|
||||
print(result)
|
||||
BIN
funasr/runtime/python/onnxruntime/dist/funasr_onnx-0.0.2-py3.8.egg
vendored
Normal file
BIN
funasr/runtime/python/onnxruntime/dist/funasr_onnx-0.0.2-py3.8.egg
vendored
Normal file
Binary file not shown.
BIN
funasr/runtime/python/onnxruntime/dist/funasr_onnx-0.0.3-py3.8.egg
vendored
Normal file
BIN
funasr/runtime/python/onnxruntime/dist/funasr_onnx-0.0.3-py3.8.egg
vendored
Normal file
Binary file not shown.
@ -0,0 +1,80 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: funasr-onnx
|
||||
Version: 0.0.3
|
||||
Summary: FunASR: A Fundamental End-to-End Speech Recognition Toolkit
|
||||
Home-page: https://github.com/alibaba-damo-academy/FunASR.git
|
||||
Author: Speech Lab, Alibaba Group, China
|
||||
Author-email: funasr@list.alibaba-inc.com
|
||||
License: MIT
|
||||
Keywords: funasr,asr
|
||||
Platform: Any
|
||||
Classifier: Programming Language :: Python :: 3.6
|
||||
Classifier: Programming Language :: Python :: 3.7
|
||||
Classifier: Programming Language :: Python :: 3.8
|
||||
Classifier: Programming Language :: Python :: 3.9
|
||||
Classifier: Programming Language :: Python :: 3.10
|
||||
Description-Content-Type: text/markdown
|
||||
|
||||
## Using funasr with ONNXRuntime
|
||||
|
||||
|
||||
### Introduction
|
||||
- Model comes from [speech_paraformer](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary).
|
||||
|
||||
|
||||
### Steps:
|
||||
1. Export the model.
|
||||
- Command: (`Tips`: torch >= 1.11.0 is required.)
|
||||
|
||||
More details ref to ([export docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export))
|
||||
|
||||
- `e.g.`, Export model from modelscope
|
||||
```shell
|
||||
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
|
||||
```
|
||||
- `e.g.`, Export model from local path, the model'name must be `model.pb`.
|
||||
```shell
|
||||
python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
|
||||
```
|
||||
|
||||
|
||||
2. Install the `funasr_onnx`
|
||||
|
||||
install from pip
|
||||
```shell
|
||||
pip install --upgrade funasr_onnx -i https://pypi.Python.org/simple
|
||||
```
|
||||
|
||||
or install from source code
|
||||
|
||||
```shell
|
||||
git clone https://github.com/alibaba/FunASR.git && cd FunASR
|
||||
cd funasr/runtime/python/funasr_onnx
|
||||
python setup.py build
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
3. Run the demo.
|
||||
- Model_dir: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`.
|
||||
- Input: wav formt file, support formats: `str, np.ndarray, List[str]`
|
||||
- Output: `List[str]`: recognition result.
|
||||
- Example:
|
||||
```python
|
||||
from funasr_onnx import Paraformer
|
||||
|
||||
model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
model = Paraformer(model_dir, batch_size=1)
|
||||
|
||||
wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
|
||||
|
||||
result = model(wav_path)
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Performance benchmark
|
||||
|
||||
Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/python/benchmark_onnx.md)
|
||||
|
||||
## Acknowledge
|
||||
1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).
|
||||
2. We acknowledge [SWHL](https://github.com/RapidAI/RapidASR) for contributing the onnxruntime (for paraformer model).
|
||||
@ -0,0 +1,17 @@
|
||||
README.md
|
||||
setup.py
|
||||
funasr_onnx/__init__.py
|
||||
funasr_onnx/paraformer_bin.py
|
||||
funasr_onnx/punc_bin.py
|
||||
funasr_onnx/vad_bin.py
|
||||
funasr_onnx.egg-info/PKG-INFO
|
||||
funasr_onnx.egg-info/SOURCES.txt
|
||||
funasr_onnx.egg-info/dependency_links.txt
|
||||
funasr_onnx.egg-info/requires.txt
|
||||
funasr_onnx.egg-info/top_level.txt
|
||||
funasr_onnx/utils/__init__.py
|
||||
funasr_onnx/utils/e2e_vad.py
|
||||
funasr_onnx/utils/frontend.py
|
||||
funasr_onnx/utils/postprocess_utils.py
|
||||
funasr_onnx/utils/timestamp_utils.py
|
||||
funasr_onnx/utils/utils.py
|
||||
@ -0,0 +1 @@
|
||||
|
||||
@ -0,0 +1,7 @@
|
||||
librosa
|
||||
onnxruntime>=1.7.0
|
||||
scipy
|
||||
numpy>=1.19.3
|
||||
typeguard
|
||||
kaldi-native-fbank
|
||||
PyYAML>=5.1.2
|
||||
@ -0,0 +1 @@
|
||||
funasr_onnx
|
||||
@ -1,2 +1,3 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
from .paraformer_bin import Paraformer
|
||||
from .vad_bin import Fsmn_vad
|
||||
|
||||
607
funasr/runtime/python/onnxruntime/funasr_onnx/utils/e2e_vad.py
Normal file
607
funasr/runtime/python/onnxruntime/funasr_onnx/utils/e2e_vad.py
Normal file
@ -0,0 +1,607 @@
|
||||
from enum import Enum
|
||||
from typing import List, Tuple, Dict, Any
|
||||
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
class VadStateMachine(Enum):
|
||||
kVadInStateStartPointNotDetected = 1
|
||||
kVadInStateInSpeechSegment = 2
|
||||
kVadInStateEndPointDetected = 3
|
||||
|
||||
|
||||
class FrameState(Enum):
|
||||
kFrameStateInvalid = -1
|
||||
kFrameStateSpeech = 1
|
||||
kFrameStateSil = 0
|
||||
|
||||
|
||||
# final voice/unvoice state per frame
|
||||
class AudioChangeState(Enum):
|
||||
kChangeStateSpeech2Speech = 0
|
||||
kChangeStateSpeech2Sil = 1
|
||||
kChangeStateSil2Sil = 2
|
||||
kChangeStateSil2Speech = 3
|
||||
kChangeStateNoBegin = 4
|
||||
kChangeStateInvalid = 5
|
||||
|
||||
|
||||
class VadDetectMode(Enum):
|
||||
kVadSingleUtteranceDetectMode = 0
|
||||
kVadMutipleUtteranceDetectMode = 1
|
||||
|
||||
|
||||
class VADXOptions:
|
||||
def __init__(
|
||||
self,
|
||||
sample_rate: int = 16000,
|
||||
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
|
||||
snr_mode: int = 0,
|
||||
max_end_silence_time: int = 800,
|
||||
max_start_silence_time: int = 3000,
|
||||
do_start_point_detection: bool = True,
|
||||
do_end_point_detection: bool = True,
|
||||
window_size_ms: int = 200,
|
||||
sil_to_speech_time_thres: int = 150,
|
||||
speech_to_sil_time_thres: int = 150,
|
||||
speech_2_noise_ratio: float = 1.0,
|
||||
do_extend: int = 1,
|
||||
lookback_time_start_point: int = 200,
|
||||
lookahead_time_end_point: int = 100,
|
||||
max_single_segment_time: int = 60000,
|
||||
nn_eval_block_size: int = 8,
|
||||
dcd_block_size: int = 4,
|
||||
snr_thres: int = -100.0,
|
||||
noise_frame_num_used_for_snr: int = 100,
|
||||
decibel_thres: int = -100.0,
|
||||
speech_noise_thres: float = 0.6,
|
||||
fe_prior_thres: float = 1e-4,
|
||||
silence_pdf_num: int = 1,
|
||||
sil_pdf_ids: List[int] = [0],
|
||||
speech_noise_thresh_low: float = -0.1,
|
||||
speech_noise_thresh_high: float = 0.3,
|
||||
output_frame_probs: bool = False,
|
||||
frame_in_ms: int = 10,
|
||||
frame_length_ms: int = 25,
|
||||
):
|
||||
self.sample_rate = sample_rate
|
||||
self.detect_mode = detect_mode
|
||||
self.snr_mode = snr_mode
|
||||
self.max_end_silence_time = max_end_silence_time
|
||||
self.max_start_silence_time = max_start_silence_time
|
||||
self.do_start_point_detection = do_start_point_detection
|
||||
self.do_end_point_detection = do_end_point_detection
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time_thres = sil_to_speech_time_thres
|
||||
self.speech_to_sil_time_thres = speech_to_sil_time_thres
|
||||
self.speech_2_noise_ratio = speech_2_noise_ratio
|
||||
self.do_extend = do_extend
|
||||
self.lookback_time_start_point = lookback_time_start_point
|
||||
self.lookahead_time_end_point = lookahead_time_end_point
|
||||
self.max_single_segment_time = max_single_segment_time
|
||||
self.nn_eval_block_size = nn_eval_block_size
|
||||
self.dcd_block_size = dcd_block_size
|
||||
self.snr_thres = snr_thres
|
||||
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
|
||||
self.decibel_thres = decibel_thres
|
||||
self.speech_noise_thres = speech_noise_thres
|
||||
self.fe_prior_thres = fe_prior_thres
|
||||
self.silence_pdf_num = silence_pdf_num
|
||||
self.sil_pdf_ids = sil_pdf_ids
|
||||
self.speech_noise_thresh_low = speech_noise_thresh_low
|
||||
self.speech_noise_thresh_high = speech_noise_thresh_high
|
||||
self.output_frame_probs = output_frame_probs
|
||||
self.frame_in_ms = frame_in_ms
|
||||
self.frame_length_ms = frame_length_ms
|
||||
|
||||
|
||||
class E2EVadSpeechBufWithDoa(object):
|
||||
def __init__(self):
|
||||
self.start_ms = 0
|
||||
self.end_ms = 0
|
||||
self.buffer = []
|
||||
self.contain_seg_start_point = False
|
||||
self.contain_seg_end_point = False
|
||||
self.doa = 0
|
||||
|
||||
def Reset(self):
|
||||
self.start_ms = 0
|
||||
self.end_ms = 0
|
||||
self.buffer = []
|
||||
self.contain_seg_start_point = False
|
||||
self.contain_seg_end_point = False
|
||||
self.doa = 0
|
||||
|
||||
|
||||
class E2EVadFrameProb(object):
|
||||
def __init__(self):
|
||||
self.noise_prob = 0.0
|
||||
self.speech_prob = 0.0
|
||||
self.score = 0.0
|
||||
self.frame_id = 0
|
||||
self.frm_state = 0
|
||||
|
||||
|
||||
class WindowDetector(object):
|
||||
def __init__(self, window_size_ms: int, sil_to_speech_time: int,
|
||||
speech_to_sil_time: int, frame_size_ms: int):
|
||||
self.window_size_ms = window_size_ms
|
||||
self.sil_to_speech_time = sil_to_speech_time
|
||||
self.speech_to_sil_time = speech_to_sil_time
|
||||
self.frame_size_ms = frame_size_ms
|
||||
|
||||
self.win_size_frame = int(window_size_ms / frame_size_ms)
|
||||
self.win_sum = 0
|
||||
self.win_state = [0] * self.win_size_frame # 初始化窗
|
||||
|
||||
self.cur_win_pos = 0
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
self.cur_frame_state = FrameState.kFrameStateSil
|
||||
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
|
||||
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
|
||||
|
||||
self.voice_last_frame_count = 0
|
||||
self.noise_last_frame_count = 0
|
||||
self.hydre_frame_count = 0
|
||||
|
||||
def Reset(self) -> None:
|
||||
self.cur_win_pos = 0
|
||||
self.win_sum = 0
|
||||
self.win_state = [0] * self.win_size_frame
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
self.cur_frame_state = FrameState.kFrameStateSil
|
||||
self.voice_last_frame_count = 0
|
||||
self.noise_last_frame_count = 0
|
||||
self.hydre_frame_count = 0
|
||||
|
||||
def GetWinSize(self) -> int:
|
||||
return int(self.win_size_frame)
|
||||
|
||||
def DetectOneFrame(self, frameState: FrameState, frame_count: int) -> AudioChangeState:
|
||||
cur_frame_state = FrameState.kFrameStateSil
|
||||
if frameState == FrameState.kFrameStateSpeech:
|
||||
cur_frame_state = 1
|
||||
elif frameState == FrameState.kFrameStateSil:
|
||||
cur_frame_state = 0
|
||||
else:
|
||||
return AudioChangeState.kChangeStateInvalid
|
||||
self.win_sum -= self.win_state[self.cur_win_pos]
|
||||
self.win_sum += cur_frame_state
|
||||
self.win_state[self.cur_win_pos] = cur_frame_state
|
||||
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSil and self.win_sum >= self.sil_to_speech_frmcnt_thres:
|
||||
self.pre_frame_state = FrameState.kFrameStateSpeech
|
||||
return AudioChangeState.kChangeStateSil2Speech
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSpeech and self.win_sum <= self.speech_to_sil_frmcnt_thres:
|
||||
self.pre_frame_state = FrameState.kFrameStateSil
|
||||
return AudioChangeState.kChangeStateSpeech2Sil
|
||||
|
||||
if self.pre_frame_state == FrameState.kFrameStateSil:
|
||||
return AudioChangeState.kChangeStateSil2Sil
|
||||
if self.pre_frame_state == FrameState.kFrameStateSpeech:
|
||||
return AudioChangeState.kChangeStateSpeech2Speech
|
||||
return AudioChangeState.kChangeStateInvalid
|
||||
|
||||
def FrameSizeMs(self) -> int:
|
||||
return int(self.frame_size_ms)
|
||||
|
||||
|
||||
class E2EVadModel():
|
||||
def __init__(self, vad_post_args: Dict[str, Any]):
|
||||
super(E2EVadModel, self).__init__()
|
||||
self.vad_opts = VADXOptions(**vad_post_args)
|
||||
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
|
||||
self.vad_opts.sil_to_speech_time_thres,
|
||||
self.vad_opts.speech_to_sil_time_thres,
|
||||
self.vad_opts.frame_in_ms)
|
||||
# self.encoder = encoder
|
||||
# init variables
|
||||
self.is_final = False
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.ResetDetection()
|
||||
|
||||
def AllResetDetection(self):
|
||||
self.is_final = False
|
||||
self.data_buf_start_frame = 0
|
||||
self.frm_cnt = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.continous_silence_frame_count = 0
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.number_end_time_detected = 0
|
||||
self.sil_frame = 0
|
||||
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
|
||||
self.noise_average_decibel = -100.0
|
||||
self.pre_end_silence_detected = False
|
||||
self.next_seg = True
|
||||
|
||||
self.output_data_buf = []
|
||||
self.output_data_buf_offset = 0
|
||||
self.frame_probs = []
|
||||
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
|
||||
self.speech_noise_thres = self.vad_opts.speech_noise_thres
|
||||
self.scores = None
|
||||
self.max_time_out = False
|
||||
self.decibel = []
|
||||
self.data_buf = None
|
||||
self.data_buf_all = None
|
||||
self.waveform = None
|
||||
self.ResetDetection()
|
||||
|
||||
def ResetDetection(self):
|
||||
self.continous_silence_frame_count = 0
|
||||
self.latest_confirmed_speech_frame = 0
|
||||
self.lastest_confirmed_silence_frame = -1
|
||||
self.confirmed_start_frame = -1
|
||||
self.confirmed_end_frame = -1
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
|
||||
self.windows_detector.Reset()
|
||||
self.sil_frame = 0
|
||||
self.frame_probs = []
|
||||
|
||||
def ComputeDecibel(self) -> None:
|
||||
frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
|
||||
frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if self.data_buf_all is None:
|
||||
self.data_buf_all = self.waveform[0] # self.data_buf is pointed to self.waveform[0]
|
||||
self.data_buf = self.data_buf_all
|
||||
else:
|
||||
self.data_buf_all = np.concatenate((self.data_buf_all, self.waveform[0]))
|
||||
for offset in range(0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
|
||||
self.decibel.append(
|
||||
10 * math.log10(np.square((self.waveform[0][offset: offset + frame_sample_length])).sum() + \
|
||||
0.000001))
|
||||
|
||||
def ComputeScores(self, scores: np.ndarray) -> None:
|
||||
# scores = self.encoder(feats, in_cache) # return B * T * D
|
||||
self.vad_opts.nn_eval_block_size = scores.shape[1]
|
||||
self.frm_cnt += scores.shape[1] # count total frames
|
||||
if self.scores is None:
|
||||
self.scores = scores # the first calculation
|
||||
else:
|
||||
self.scores = np.concatenate((self.scores, scores), axis=1)
|
||||
|
||||
def PopDataBufTillFrame(self, frame_idx: int) -> None: # need check again
|
||||
while self.data_buf_start_frame < frame_idx:
|
||||
if len(self.data_buf) >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
|
||||
self.data_buf_start_frame += 1
|
||||
self.data_buf = self.data_buf_all[self.data_buf_start_frame * int(
|
||||
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):]
|
||||
|
||||
def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
|
||||
last_frm_is_end_point: bool, end_point_is_sent_end: bool) -> None:
|
||||
self.PopDataBufTillFrame(start_frm)
|
||||
expected_sample_number = int(frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000)
|
||||
if last_frm_is_end_point:
|
||||
extra_sample = max(0, int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 - \
|
||||
self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
|
||||
expected_sample_number += int(extra_sample)
|
||||
if end_point_is_sent_end:
|
||||
expected_sample_number = max(expected_sample_number, len(self.data_buf))
|
||||
if len(self.data_buf) < expected_sample_number:
|
||||
print('error in calling pop data_buf\n')
|
||||
|
||||
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
|
||||
self.output_data_buf.append(E2EVadSpeechBufWithDoa())
|
||||
self.output_data_buf[-1].Reset()
|
||||
self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
|
||||
self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
|
||||
self.output_data_buf[-1].doa = 0
|
||||
cur_seg = self.output_data_buf[-1]
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('warning\n')
|
||||
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
|
||||
data_to_pop = 0
|
||||
if end_point_is_sent_end:
|
||||
data_to_pop = expected_sample_number
|
||||
else:
|
||||
data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
|
||||
if data_to_pop > len(self.data_buf):
|
||||
print('VAD data_to_pop is bigger than self.data_buf.size()!!!\n')
|
||||
data_to_pop = len(self.data_buf)
|
||||
expected_sample_number = len(self.data_buf)
|
||||
|
||||
cur_seg.doa = 0
|
||||
for sample_cpy_out in range(0, data_to_pop):
|
||||
# cur_seg.buffer[out_pos ++] = data_buf_.back();
|
||||
out_pos += 1
|
||||
for sample_cpy_out in range(data_to_pop, expected_sample_number):
|
||||
# cur_seg.buffer[out_pos++] = data_buf_.back()
|
||||
out_pos += 1
|
||||
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
|
||||
print('Something wrong with the VAD algorithm\n')
|
||||
self.data_buf_start_frame += frm_cnt
|
||||
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
|
||||
if first_frm_is_start_point:
|
||||
cur_seg.contain_seg_start_point = True
|
||||
if last_frm_is_end_point:
|
||||
cur_seg.contain_seg_end_point = True
|
||||
|
||||
def OnSilenceDetected(self, valid_frame: int):
|
||||
self.lastest_confirmed_silence_frame = valid_frame
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataBufTillFrame(valid_frame)
|
||||
# silence_detected_callback_
|
||||
# pass
|
||||
|
||||
def OnVoiceDetected(self, valid_frame: int) -> None:
|
||||
self.latest_confirmed_speech_frame = valid_frame
|
||||
self.PopDataToOutputBuf(valid_frame, 1, False, False, False)
|
||||
|
||||
def OnVoiceStart(self, start_frame: int, fake_result: bool = False) -> None:
|
||||
if self.vad_opts.do_start_point_detection:
|
||||
pass
|
||||
if self.confirmed_start_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_start_frame = start_frame
|
||||
|
||||
if not fake_result and self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
self.PopDataToOutputBuf(self.confirmed_start_frame, 1, True, False, False)
|
||||
|
||||
def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool) -> None:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
|
||||
self.OnVoiceDetected(t)
|
||||
if self.vad_opts.do_end_point_detection:
|
||||
pass
|
||||
if self.confirmed_end_frame != -1:
|
||||
print('not reset vad properly\n')
|
||||
else:
|
||||
self.confirmed_end_frame = end_frame
|
||||
if not fake_result:
|
||||
self.sil_frame = 0
|
||||
self.PopDataToOutputBuf(self.confirmed_end_frame, 1, False, True, is_last_frame)
|
||||
self.number_end_time_detected += 1
|
||||
|
||||
def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int) -> None:
|
||||
if is_final_frame:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, True)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
|
||||
def GetLatency(self) -> int:
|
||||
return int(self.LatencyFrmNumAtStartPoint() * self.vad_opts.frame_in_ms)
|
||||
|
||||
def LatencyFrmNumAtStartPoint(self) -> int:
|
||||
vad_latency = self.windows_detector.GetWinSize()
|
||||
if self.vad_opts.do_extend:
|
||||
vad_latency += int(self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms)
|
||||
return vad_latency
|
||||
|
||||
def GetFrameState(self, t: int) -> FrameState:
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
cur_decibel = self.decibel[t]
|
||||
cur_snr = cur_decibel - self.noise_average_decibel
|
||||
# for each frame, calc log posterior probability of each state
|
||||
if cur_decibel < self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
self.DetectOneFrame(frame_state, t, False)
|
||||
return frame_state
|
||||
|
||||
sum_score = 0.0
|
||||
noise_prob = 0.0
|
||||
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
|
||||
if len(self.sil_pdf_ids) > 0:
|
||||
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
|
||||
sil_pdf_scores = [self.scores[0][t][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
|
||||
sum_score = sum(sil_pdf_scores)
|
||||
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
|
||||
total_score = 1.0
|
||||
sum_score = total_score - sum_score
|
||||
speech_prob = math.log(sum_score)
|
||||
if self.vad_opts.output_frame_probs:
|
||||
frame_prob = E2EVadFrameProb()
|
||||
frame_prob.noise_prob = noise_prob
|
||||
frame_prob.speech_prob = speech_prob
|
||||
frame_prob.score = sum_score
|
||||
frame_prob.frame_id = t
|
||||
self.frame_probs.append(frame_prob)
|
||||
if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
|
||||
if cur_snr >= self.vad_opts.snr_thres and cur_decibel >= self.vad_opts.decibel_thres:
|
||||
frame_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
else:
|
||||
frame_state = FrameState.kFrameStateSil
|
||||
if self.noise_average_decibel < -99.9:
|
||||
self.noise_average_decibel = cur_decibel
|
||||
else:
|
||||
self.noise_average_decibel = (cur_decibel + self.noise_average_decibel * (
|
||||
self.vad_opts.noise_frame_num_used_for_snr
|
||||
- 1)) / self.vad_opts.noise_frame_num_used_for_snr
|
||||
|
||||
return frame_state
|
||||
|
||||
|
||||
def __call__(self, score: np.ndarray, waveform: np.ndarray,
|
||||
is_final: bool = False, max_end_sil: int = 800
|
||||
):
|
||||
self.max_end_sil_frame_cnt_thresh = max_end_sil - self.vad_opts.speech_to_sil_time_thres
|
||||
self.waveform = waveform # compute decibel for each frame
|
||||
self.ComputeDecibel()
|
||||
self.ComputeScores(score)
|
||||
if not is_final:
|
||||
self.DetectCommonFrames()
|
||||
else:
|
||||
self.DetectLastFrames()
|
||||
segments = []
|
||||
for batch_num in range(0, score.shape[0]): # only support batch_size = 1 now
|
||||
segment_batch = []
|
||||
if len(self.output_data_buf) > 0:
|
||||
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
|
||||
if not self.output_data_buf[i].contain_seg_start_point:
|
||||
continue
|
||||
if not self.next_seg and not self.output_data_buf[i].contain_seg_end_point:
|
||||
continue
|
||||
start_ms = self.output_data_buf[i].start_ms if self.next_seg else -1
|
||||
if self.output_data_buf[i].contain_seg_end_point:
|
||||
end_ms = self.output_data_buf[i].end_ms
|
||||
self.next_seg = True
|
||||
self.output_data_buf_offset += 1
|
||||
else:
|
||||
end_ms = -1
|
||||
self.next_seg = False
|
||||
segment = [start_ms, end_ms]
|
||||
segment_batch.append(segment)
|
||||
if segment_batch:
|
||||
segments.append(segment_batch)
|
||||
if is_final:
|
||||
# reset class variables and clear the dict for the next query
|
||||
self.AllResetDetection()
|
||||
return segments
|
||||
|
||||
def DetectCommonFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectLastFrames(self) -> int:
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
|
||||
return 0
|
||||
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
|
||||
frame_state = FrameState.kFrameStateInvalid
|
||||
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
|
||||
if i != 0:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
|
||||
else:
|
||||
self.DetectOneFrame(frame_state, self.frm_cnt - 1, True)
|
||||
|
||||
return 0
|
||||
|
||||
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateInvalid
|
||||
if cur_frm_state == FrameState.kFrameStateSpeech:
|
||||
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSpeech
|
||||
else:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
elif cur_frm_state == FrameState.kFrameStateSil:
|
||||
tmp_cur_frm_state = FrameState.kFrameStateSil
|
||||
state_change = self.windows_detector.DetectOneFrame(tmp_cur_frm_state, cur_frm_idx)
|
||||
frm_shift_in_ms = self.vad_opts.frame_in_ms
|
||||
if AudioChangeState.kChangeStateSil2Speech == state_change:
|
||||
silence_frame_count = self.continous_silence_frame_count
|
||||
self.continous_silence_frame_count = 0
|
||||
self.pre_end_silence_detected = False
|
||||
start_frame = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
start_frame = max(self.data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
self.OnVoiceStart(start_frame)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
|
||||
for t in range(start_frame + 1, cur_frm_idx + 1):
|
||||
self.OnVoiceDetected(t)
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
|
||||
self.OnVoiceDetected(t)
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
pass
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
|
||||
self.continous_silence_frame_count = 0
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.max_time_out = True
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif not is_final_frame:
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
elif AudioChangeState.kChangeStateSil2Sil == state_change:
|
||||
self.continous_silence_frame_count += 1
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
|
||||
# silence timeout, return zero length decision
|
||||
if ((self.vad_opts.detect_mode == VadDetectMode.kVadSingleUtteranceDetectMode.value) and (
|
||||
self.continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
|
||||
or (is_final_frame and self.number_end_time_detected == 0):
|
||||
for t in range(self.lastest_confirmed_silence_frame + 1, cur_frm_idx):
|
||||
self.OnSilenceDetected(t)
|
||||
self.OnVoiceStart(0, True)
|
||||
self.OnVoiceEnd(0, True, False);
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
else:
|
||||
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint():
|
||||
self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint())
|
||||
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
|
||||
if self.continous_silence_frame_count * frm_shift_in_ms >= self.max_end_sil_frame_cnt_thresh:
|
||||
lookback_frame = int(self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
|
||||
if self.vad_opts.do_extend:
|
||||
lookback_frame -= int(self.vad_opts.lookahead_time_end_point / frm_shift_in_ms)
|
||||
lookback_frame -= 1
|
||||
lookback_frame = max(0, lookback_frame)
|
||||
self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif cur_frm_idx - self.confirmed_start_frame + 1 > \
|
||||
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
|
||||
self.OnVoiceEnd(cur_frm_idx, False, False)
|
||||
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
|
||||
elif self.vad_opts.do_extend and not is_final_frame:
|
||||
if self.continous_silence_frame_count <= int(
|
||||
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms):
|
||||
self.OnVoiceDetected(cur_frm_idx)
|
||||
else:
|
||||
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
|
||||
else:
|
||||
pass
|
||||
|
||||
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
|
||||
self.vad_opts.detect_mode == VadDetectMode.kVadMutipleUtteranceDetectMode.value:
|
||||
self.ResetDetection()
|
||||
@ -188,7 +188,7 @@ class OrtInferSession():
|
||||
input_content: List[Union[np.ndarray, np.ndarray]]) -> np.ndarray:
|
||||
input_dict = dict(zip(self.get_input_names(), input_content))
|
||||
try:
|
||||
return self.session.run(None, input_dict)
|
||||
return self.session.run(self.get_output_names(), input_dict)
|
||||
except Exception as e:
|
||||
raise ONNXRuntimeError('ONNXRuntime inferece failed.') from e
|
||||
|
||||
|
||||
134
funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py
Normal file
134
funasr/runtime/python/onnxruntime/funasr_onnx/vad_bin.py
Normal file
@ -0,0 +1,134 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
|
||||
import copy
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
from .utils.utils import (ONNXRuntimeError,
|
||||
OrtInferSession, get_logger,
|
||||
read_yaml)
|
||||
from .utils.frontend import WavFrontend
|
||||
from .utils.e2e_vad import E2EVadModel
|
||||
|
||||
logging = get_logger()
|
||||
|
||||
|
||||
class Fsmn_vad():
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4,
|
||||
max_end_sil: int = 800,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.onnx')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||||
config_file = os.path.join(model_dir, 'vad.yaml')
|
||||
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf']
|
||||
)
|
||||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||||
self.batch_size = batch_size
|
||||
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
|
||||
self.max_end_sil = max_end_sil
|
||||
|
||||
def prepare_cache(self, in_cache: list = []):
|
||||
if len(in_cache) > 0:
|
||||
return in_cache
|
||||
|
||||
for i in range(4):
|
||||
cache = np.random.rand(1, 128, 19, 1).astype(np.float32)
|
||||
in_cache.append(cache)
|
||||
return in_cache
|
||||
|
||||
|
||||
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
is_final = kwargs.get('kwargs', False)
|
||||
|
||||
asr_res = []
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
waveform = waveform_list[beg_idx:end_idx]
|
||||
feats, feats_len = self.extract_feat(waveform)
|
||||
param_dict = kwargs.get('param_dict', dict())
|
||||
in_cache = param_dict.get('cache', list())
|
||||
in_cache = self.prepare_cache(in_cache)
|
||||
try:
|
||||
inputs = [feats]
|
||||
inputs.extend(in_cache)
|
||||
scores, out_caches = self.infer(inputs)
|
||||
param_dict['cache'] = out_caches
|
||||
segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil)
|
||||
|
||||
except ONNXRuntimeError:
|
||||
# logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
segments = ''
|
||||
asr_res.append(segments)
|
||||
|
||||
return asr_res
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
def load_wav(path: str) -> np.ndarray:
|
||||
waveform, _ = librosa.load(path, sr=fs)
|
||||
return waveform
|
||||
|
||||
if isinstance(wav_content, np.ndarray):
|
||||
return [wav_content]
|
||||
|
||||
if isinstance(wav_content, str):
|
||||
return [load_wav(wav_content)]
|
||||
|
||||
if isinstance(wav_content, list):
|
||||
return [load_wav(path) for path in wav_content]
|
||||
|
||||
raise TypeError(
|
||||
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
||||
|
||||
def extract_feat(self,
|
||||
waveform_list: List[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
feats, feats_len = [], []
|
||||
for waveform in waveform_list:
|
||||
speech, _ = self.frontend.fbank(waveform)
|
||||
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
||||
feats.append(feat)
|
||||
feats_len.append(feat_len)
|
||||
|
||||
feats = self.pad_feats(feats, np.max(feats_len))
|
||||
feats_len = np.array(feats_len).astype(np.int32)
|
||||
return feats, feats_len
|
||||
|
||||
@staticmethod
|
||||
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||||
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||||
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||||
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
||||
|
||||
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||||
feats = np.array(feat_res).astype(np.float32)
|
||||
return feats
|
||||
|
||||
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
|
||||
|
||||
outputs = self.ort_infer(feats)
|
||||
scores, out_caches = outputs[0], outputs[1:]
|
||||
return scores, out_caches
|
||||
|
||||
@ -13,7 +13,7 @@ def get_readme():
|
||||
|
||||
|
||||
MODULE_NAME = 'funasr_onnx'
|
||||
VERSION_NUM = '0.0.2'
|
||||
VERSION_NUM = '0.0.3'
|
||||
|
||||
setuptools.setup(
|
||||
name=MODULE_NAME,
|
||||
|
||||
Loading…
Reference in New Issue
Block a user