This commit is contained in:
游雁 2023-04-18 17:29:57 +08:00
parent 66b502164d
commit 7a0c0f3399
2 changed files with 135 additions and 4 deletions

View File

@ -45,7 +45,9 @@ FunASR hopes to build a bridge between academic research and industrial applicat
./modescope_pipeline/asr_pipeline.md
./modescope_pipeline/vad_pipeline.md
./modescope_pipeline/punc_pipeline.md
./modescope_pipeline/tp_pipeline.md
./modescope_pipeline/sv_pipeline.md
./modescope_pipeline/lm_pipeline.md
.. toctree::
:maxdepth: 1
@ -65,9 +67,6 @@ FunASR hopes to build a bridge between academic research and industrial applicat
./papers.md
.. toctree::
:maxdepth: 1
:caption: API Reference

View File

@ -1,6 +1,138 @@
# Quick Start
## Inference with pipeline
### Speech Recognition
#### Paraformer model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
```
### Voice Activity Detection
#### FSMN-VAD
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
import logging
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
inference_pipeline = pipeline(
task=Tasks.voice_activity_detection,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
print(segments_result)
```
### Punctuation Restoration
#### CT_Transformer
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
)
rec_result = inference_pipeline(text_in='我们都是木头人不会讲话不会动')
print(rec_result)
```
### Timestamp Prediction
#### TP-Aligner
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.speech_timestamp,
model='damo/speech_timestamp_prediction-v1-16k-offline',
output_dir='./tmp')
rec_result = inference_pipeline(
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav',
text_in='一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢',)
print(rec_result)
```
### Speaker Verification
#### X-vector
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import numpy as np
inference_sv_pipline = pipeline(
task=Tasks.speaker_verification,
model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch'
)
# embedding extract
spk_embedding = inference_sv_pipline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav')["spk_embedding"]
# speaker verification
rec_result = inference_sv_pipline(audio_in=('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav','https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_same.wav'))
print(rec_result["scores"][0])
```
## Finetune with pipeline
### Speech Recognition
#### Paraformer model
finetune.py
```python
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
from funasr.utils.modelscope_param import modelscope_args
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
params.output_dir = "./checkpoint" # 模型保存路径
params.data_path = "speech_asr_aishell1_trainsets" # 数据路径可以为modelscope中已上传数据也可以是本地数据
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 2000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)
```
```shell
python finetune.py &> log.txt &
```
If you want finetune with multi-GPUs, you could:
```shell
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
```