mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
7817db2e20
@ -8,7 +8,7 @@ gpu_num=2
|
||||
count=1
|
||||
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
|
||||
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
|
||||
njob=8
|
||||
njob=1
|
||||
train_cmd=utils/run.pl
|
||||
infer_cmd=utils/run.pl
|
||||
|
||||
@ -219,7 +219,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
fi
|
||||
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
||||
python -m funasr.bin.asr_inference_launch \
|
||||
--batch_size 1 \
|
||||
--batch_size 100 \
|
||||
--ngpu "${_ngpu}" \
|
||||
--njob ${njob} \
|
||||
--gpuid_list ${gpuid_list} \
|
||||
|
||||
@ -8,7 +8,7 @@ gpu_num=2
|
||||
count=1
|
||||
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
|
||||
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
|
||||
njob=8
|
||||
njob=1
|
||||
train_cmd=utils/run.pl
|
||||
infer_cmd=utils/run.pl
|
||||
|
||||
@ -235,7 +235,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
fi
|
||||
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
||||
python -m funasr.bin.asr_inference_launch \
|
||||
--batch_size 1 \
|
||||
--batch_size 100 \
|
||||
--ngpu "${_ngpu}" \
|
||||
--njob ${njob} \
|
||||
--gpuid_list ${gpuid_list} \
|
||||
|
||||
@ -441,7 +441,7 @@ def inference(
|
||||
"decoding, feature length: {}, forward_time: {:.4f}, rtf: {:.4f}".
|
||||
format(length, forward_time, 100 * forward_time / (length*lfr_factor)))
|
||||
|
||||
for batch_id in range(len(results)):
|
||||
for batch_id in range(_bs):
|
||||
result = [results[batch_id][:-2]]
|
||||
|
||||
key = keys[batch_id]
|
||||
|
||||
@ -31,10 +31,12 @@ class CifPredictor(nn.Module):
|
||||
alphas = torch.sigmoid(output)
|
||||
alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
|
||||
if mask is not None:
|
||||
alphas = alphas * mask.transpose(-1, -2).float()
|
||||
mask = mask.transpose(-1, -2).float()
|
||||
alphas = alphas * mask
|
||||
if mask_chunk_predictor is not None:
|
||||
alphas = alphas * mask_chunk_predictor
|
||||
alphas = alphas.squeeze(-1)
|
||||
mask = mask.squeeze(-1)
|
||||
if target_label_length is not None:
|
||||
target_length = target_label_length
|
||||
elif target_label is not None:
|
||||
|
||||
Loading…
Reference in New Issue
Block a user