mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
71766839fd
@ -71,7 +71,7 @@ from funasr.utils.types import str2bool
|
||||
from funasr.utils.types import str2triple_str
|
||||
from funasr.utils.types import str_or_int
|
||||
from funasr.utils.types import str_or_none
|
||||
from funasr.utils.wav_utils import calc_shape, generate_data_list
|
||||
from funasr.utils.wav_utils import calc_shape, generate_data_list, filter_wav_text
|
||||
from funasr.utils.yaml_no_alias_safe_dump import yaml_no_alias_safe_dump
|
||||
|
||||
try:
|
||||
@ -1153,6 +1153,14 @@ class AbsTask(ABC):
|
||||
if args.batch_bins is not None:
|
||||
args.batch_bins = args.batch_bins * args.ngpu
|
||||
|
||||
# filter samples if wav.scp and text are mismatch
|
||||
if (args.train_shape_file is None and args.dataset_type == "small") or args.train_data_file is None and args.dataset_type == "large":
|
||||
if not args.simple_ddp or distributed_option.dist_rank == 0:
|
||||
filter_wav_text(args.data_dir, args.train_set)
|
||||
filter_wav_text(args.data_dir, args.dev_set)
|
||||
if args.simple_ddp:
|
||||
dist.barrier()
|
||||
|
||||
if args.train_shape_file is None and args.dataset_type == "small":
|
||||
if not args.simple_ddp or distributed_option.dist_rank == 0:
|
||||
calc_shape(args.data_dir, args.train_set, args.frontend_conf, args.speech_length_min, args.speech_length_max)
|
||||
|
||||
@ -287,3 +287,35 @@ def generate_data_list(data_dir, dataset, nj=100):
|
||||
wav_path = os.path.join(split_dir, str(i + 1), "wav.scp")
|
||||
text_path = os.path.join(split_dir, str(i + 1), "text")
|
||||
f_data.write(wav_path + " " + text_path + "\n")
|
||||
|
||||
def filter_wav_text(data_dir, dataset):
|
||||
wav_file = os.path.join(data_dir,dataset,"wav.scp")
|
||||
text_file = os.path.join(data_dir, dataset, "text")
|
||||
with open(wav_file) as f_wav, open(text_file) as f_text:
|
||||
wav_lines = f_wav.readlines()
|
||||
text_lines = f_text.readlines()
|
||||
os.rename(wav_file, "{}.bak".format(wav_file))
|
||||
os.rename(text_file, "{}.bak".format(text_file))
|
||||
wav_dict = {}
|
||||
for line in wav_lines:
|
||||
parts = line.strip().split()
|
||||
if len(parts) < 2:
|
||||
continue
|
||||
sample_name, wav_path = parts
|
||||
wav_dict[sample_name] = wav_path
|
||||
text_dict = {}
|
||||
for line in text_lines:
|
||||
parts = line.strip().split(" ", 1)
|
||||
if len(parts) < 2:
|
||||
continue
|
||||
sample_name, txt = parts
|
||||
text_dict[sample_name] = txt
|
||||
filter_count = 0
|
||||
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
|
||||
for sample_name, wav_path in wav_dict.items():
|
||||
if sample_name in text_dict.keys():
|
||||
f_wav.write(sample_name + " " + wav_path + "\n")
|
||||
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
|
||||
else:
|
||||
filter_count += 1
|
||||
print("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(len(wav_lines), filter_count, dataset))
|
||||
Loading…
Reference in New Issue
Block a user