mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
test
This commit is contained in:
parent
5130d2406d
commit
70a236b652
@ -8,7 +8,7 @@ python -m funasr.bin.inference \
|
||||
++tokenizer_conf.token_list=${file_dir}/tokens.txt \
|
||||
++frontend_conf.cmvn_file=${file_dir}/am.mvn \
|
||||
++input=[${file_dir}/wav.scp,${file_dir}/ocr_text] \
|
||||
+data_type='["sound", "text"]' \
|
||||
+data_type='["kaldi_ark", "text"]' \
|
||||
++tokenizer_conf.bpemodel=${file_dir}/bpe.model \
|
||||
++output_dir="./outputs/debug" \
|
||||
++device="" \
|
||||
|
||||
@ -17,35 +17,28 @@ import pdb
|
||||
|
||||
|
||||
def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: int = 16000, data_type="sound", tokenizer=None, **kwargs):
|
||||
pdb.set_trace()
|
||||
if isinstance(data_or_path_or_list, (list, tuple)):
|
||||
if data_type is not None and isinstance(data_type, (list, tuple)):
|
||||
pdb.set_trace()
|
||||
data_types = [data_type] * len(data_or_path_or_list)
|
||||
data_or_path_or_list_ret = [[] for d in data_type]
|
||||
pdb.set_trace()
|
||||
for i, (data_type_i, data_or_path_or_list_i) in enumerate(zip(data_types, data_or_path_or_list)):
|
||||
|
||||
for j, (data_type_j, data_or_path_or_list_j) in enumerate(zip(data_type_i, data_or_path_or_list_i)):
|
||||
pdb.set_trace()
|
||||
data_or_path_or_list_j = load_audio_text_image_video(data_or_path_or_list_j, fs=fs, audio_fs=audio_fs, data_type=data_type_j, tokenizer=tokenizer, **kwargs)
|
||||
pdb.set_trace()
|
||||
data_or_path_or_list_ret[j].append(data_or_path_or_list_j)
|
||||
|
||||
return data_or_path_or_list_ret
|
||||
else:
|
||||
return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs) for audio in data_or_path_or_list]
|
||||
pdb.set_trace()
|
||||
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith('http'): # download url to local file
|
||||
data_or_path_or_list = download_from_url(data_or_path_or_list)
|
||||
pdb.set_trace()
|
||||
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
||||
pdb.set_trace()
|
||||
if data_type is None or data_type == "sound":
|
||||
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||||
if kwargs.get("reduce_channels", True):
|
||||
data_or_path_or_list = data_or_path_or_list.mean(0)
|
||||
elif data_type == "text" and tokenizer is not None:
|
||||
pdb.set_trace()
|
||||
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||||
elif data_type == "image": # undo
|
||||
pass
|
||||
@ -60,6 +53,19 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
|
||||
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||||
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
|
||||
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||||
elif isinstance(data_or_path_or_list, str) and data_type == "kaldi_ark":
|
||||
data_mat = kaldiio.load_mat(data_or_path_or_list)
|
||||
if isinstance(data_mat, tuple):
|
||||
sampling_rate, mat = data_mat
|
||||
assert sampling_rate == audio_fs
|
||||
else:
|
||||
mat = data_mat
|
||||
if mat.dtype == 'int16' or mat.dtype == 'int32':
|
||||
mat = mat.astype(np.float64)
|
||||
mat = mat / 32768
|
||||
if mat.ndim ==2:
|
||||
mat = mat[:,0]
|
||||
data_or_path_or_list = mat
|
||||
else:
|
||||
pass
|
||||
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
|
||||
|
||||
Loading…
Reference in New Issue
Block a user