diff --git a/examples/industrial_data_pretraining/bicif_paraformer/demo.py b/examples/industrial_data_pretraining/bicif_paraformer/demo.py index 4a5e33389..16eed3702 100644 --- a/examples/industrial_data_pretraining/bicif_paraformer/demo.py +++ b/examples/industrial_data_pretraining/bicif_paraformer/demo.py @@ -6,12 +6,28 @@ from funasr import AutoModel model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch", - model_revision="v2.0.0", - vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", - vad_model_revision="v2.0.0", - punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", - punc_model_revision="v2.0.0", + model_revision="v2.0.0", + vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", + vad_model_revision="v2.0.0", + punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", + punc_model_revision="v2.0.0", + spk_model="/Users/shixian/code/modelscope_models/speech_campplus_sv_zh-cn_16k-common", ) res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_vad_punc_example.wav", batch_size_s=300, batch_size_threshold_s=60) -print(res) \ No newline at end of file +print(res) + +'''try asr with speaker label with +model = AutoModel(model="damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch", + model_revision="v2.0.0", + vad_model="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch", + vad_model_revision="v2.0.0", + punc_model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch", + punc_model_revision="v2.0.0", + spk_model="/Users/shixian/code/modelscope_models/speech_campplus_sv_zh-cn_16k-common", + spk_mode='punc_segment', + ) + +res = model(input="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_speaker_demo.wav", batch_size_s=300, batch_size_threshold_s=60) +print(res) +''' \ No newline at end of file diff --git a/funasr/bin/inference.py b/funasr/bin/inference.py index 2d94e70a8..cf29d91da 100644 --- a/funasr/bin/inference.py +++ b/funasr/bin/inference.py @@ -1,453 +1,501 @@ -import os.path - -import torch -import numpy as np -import hydra import json -from omegaconf import DictConfig, OmegaConf, ListConfig -import logging -from funasr.download.download_from_hub import download_model -from funasr.train_utils.set_all_random_seed import set_all_random_seed -from funasr.utils.load_utils import load_bytes -from funasr.train_utils.device_funcs import to_device -from tqdm import tqdm -from funasr.train_utils.load_pretrained_model import load_pretrained_model import time +import torch +import hydra import random import string -from funasr.register import tables +import logging +import os.path +from tqdm import tqdm +from omegaconf import DictConfig, OmegaConf, ListConfig -from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank -from funasr.utils.vad_utils import slice_padding_audio_samples -from funasr.utils.timestamp_tools import time_stamp_sentence +from funasr.register import tables +from funasr.utils.load_utils import load_bytes from funasr.download.file import download_from_url +from funasr.download.download_from_hub import download_model +from funasr.utils.vad_utils import slice_padding_audio_samples +from funasr.train_utils.set_all_random_seed import set_all_random_seed +from funasr.train_utils.load_pretrained_model import load_pretrained_model +from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank +from funasr.utils.timestamp_tools import timestamp_sentence +from funasr.models.campplus.utils import sv_chunk, postprocess, distribute_spk +from funasr.models.campplus.cluster_backend import ClusterBackend + def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): - """ - - :param input: - :param input_len: - :param data_type: - :param frontend: - :return: - """ - data_list = [] - key_list = [] - filelist = [".scp", ".txt", ".json", ".jsonl"] - - chars = string.ascii_letters + string.digits - if isinstance(data_in, str) and data_in.startswith('http'): # url - data_in = download_from_url(data_in) - if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt; - _, file_extension = os.path.splitext(data_in) - file_extension = file_extension.lower() - if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt; - with open(data_in, encoding='utf-8') as fin: - for line in fin: - key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) - if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data}) - lines = json.loads(line.strip()) - data = lines["source"] - key = data["key"] if "key" in data else key - else: # filelist, wav.scp, text.txt: id \t data or data - lines = line.strip().split(maxsplit=1) - data = lines[1] if len(lines)>1 else lines[0] - key = lines[0] if len(lines)>1 else key - - data_list.append(data) - key_list.append(key) - else: - key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) - data_list = [data_in] - key_list = [key] - elif isinstance(data_in, (list, tuple)): - if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs - data_list_tmp = [] - for data_in_i, data_type_i in zip(data_in, data_type): - key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i) - data_list_tmp.append(data_list_i) - data_list = [] - for item in zip(*data_list_tmp): - data_list.append(item) - else: - # [audio sample point, fbank, text] - data_list = data_in - key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))] - else: # raw text; audio sample point, fbank; bytes - if isinstance(data_in, bytes): # audio bytes - data_in = load_bytes(data_in) - if key is None: - key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) - data_list = [data_in] - key_list = [key] - - return key_list, data_list + """ + + :param input: + :param input_len: + :param data_type: + :param frontend: + :return: + """ + data_list = [] + key_list = [] + filelist = [".scp", ".txt", ".json", ".jsonl"] + + chars = string.ascii_letters + string.digits + if isinstance(data_in, str) and data_in.startswith('http'): # url + data_in = download_from_url(data_in) + if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt; + _, file_extension = os.path.splitext(data_in) + file_extension = file_extension.lower() + if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt; + with open(data_in, encoding='utf-8') as fin: + for line in fin: + key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) + if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data}) + lines = json.loads(line.strip()) + data = lines["source"] + key = data["key"] if "key" in data else key + else: # filelist, wav.scp, text.txt: id \t data or data + lines = line.strip().split(maxsplit=1) + data = lines[1] if len(lines)>1 else lines[0] + key = lines[0] if len(lines)>1 else key + + data_list.append(data) + key_list.append(key) + else: + key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) + data_list = [data_in] + key_list = [key] + elif isinstance(data_in, (list, tuple)): + if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs + data_list_tmp = [] + for data_in_i, data_type_i in zip(data_in, data_type): + key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i) + data_list_tmp.append(data_list_i) + data_list = [] + for item in zip(*data_list_tmp): + data_list.append(item) + else: + # [audio sample point, fbank, text] + data_list = data_in + key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))] + else: # raw text; audio sample point, fbank; bytes + if isinstance(data_in, bytes): # audio bytes + data_in = load_bytes(data_in) + if key is None: + key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13)) + data_list = [data_in] + key_list = [key] + + return key_list, data_list @hydra.main(config_name=None, version_base=None) def main_hydra(cfg: DictConfig): - def to_plain_list(cfg_item): - if isinstance(cfg_item, ListConfig): - return OmegaConf.to_container(cfg_item, resolve=True) - elif isinstance(cfg_item, DictConfig): - return {k: to_plain_list(v) for k, v in cfg_item.items()} - else: - return cfg_item - - kwargs = to_plain_list(cfg) - log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) + def to_plain_list(cfg_item): + if isinstance(cfg_item, ListConfig): + return OmegaConf.to_container(cfg_item, resolve=True) + elif isinstance(cfg_item, DictConfig): + return {k: to_plain_list(v) for k, v in cfg_item.items()} + else: + return cfg_item + + kwargs = to_plain_list(cfg) + log_level = getattr(logging, kwargs.get("log_level", "INFO").upper()) - logging.basicConfig(level=log_level) + logging.basicConfig(level=log_level) - if kwargs.get("debug", False): - import pdb; pdb.set_trace() - model = AutoModel(**kwargs) - res = model(input=kwargs["input"]) - print(res) + if kwargs.get("debug", False): + import pdb; pdb.set_trace() + model = AutoModel(**kwargs) + res = model(input=kwargs["input"]) + print(res) class AutoModel: - - def __init__(self, **kwargs): - tables.print() - - model, kwargs = self.build_model(**kwargs) - - # if vad_model is not None, build vad model else None - vad_model = kwargs.get("vad_model", None) - vad_kwargs = kwargs.get("vad_model_revision", None) - if vad_model is not None: - print("build vad model") - vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs} - vad_model, vad_kwargs = self.build_model(**vad_kwargs) + + def __init__(self, **kwargs): + tables.print() + + model, kwargs = self.build_model(**kwargs) + + # if vad_model is not None, build vad model else None + vad_model = kwargs.get("vad_model", None) + vad_kwargs = kwargs.get("vad_model_revision", None) + if vad_model is not None: + print("build vad model") + vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs} + vad_model, vad_kwargs = self.build_model(**vad_kwargs) - # if punc_model is not None, build punc model else None - punc_model = kwargs.get("punc_model", None) - punc_kwargs = kwargs.get("punc_model_revision", None) - if punc_model is not None: - punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs} - punc_model, punc_kwargs = self.build_model(**punc_kwargs) - - self.kwargs = kwargs - self.model = model - self.vad_model = vad_model - self.vad_kwargs = vad_kwargs - self.punc_model = punc_model - self.punc_kwargs = punc_kwargs - - + # if punc_model is not None, build punc model else None + punc_model = kwargs.get("punc_model", None) + punc_kwargs = kwargs.get("punc_model_revision", None) + if punc_model is not None: + punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs} + punc_model, punc_kwargs = self.build_model(**punc_kwargs) - def build_model(self, **kwargs): - assert "model" in kwargs - if "model_conf" not in kwargs: - logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) - kwargs = download_model(**kwargs) - - set_all_random_seed(kwargs.get("seed", 0)) - - device = kwargs.get("device", "cuda") - if not torch.cuda.is_available() or kwargs.get("ngpu", 0): - device = "cpu" - # kwargs["batch_size"] = 1 - kwargs["device"] = device - - if kwargs.get("ncpu", None): - torch.set_num_threads(kwargs.get("ncpu")) - - # build tokenizer - tokenizer = kwargs.get("tokenizer", None) - if tokenizer is not None: - tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower()) - tokenizer = tokenizer_class(**kwargs["tokenizer_conf"]) - kwargs["tokenizer"] = tokenizer - kwargs["token_list"] = tokenizer.token_list - vocab_size = len(tokenizer.token_list) - else: - vocab_size = -1 - - # build frontend - frontend = kwargs.get("frontend", None) - if frontend is not None: - frontend_class = tables.frontend_classes.get(frontend.lower()) - frontend = frontend_class(**kwargs["frontend_conf"]) - kwargs["frontend"] = frontend - kwargs["input_size"] = frontend.output_size() - - # build model - model_class = tables.model_classes.get(kwargs["model"].lower()) - model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size) - model.eval() - model.to(device) - - # init_param - init_param = kwargs.get("init_param", None) - if init_param is not None: - logging.info(f"Loading pretrained params from {init_param}") - load_pretrained_model( - model=model, - init_param=init_param, - ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False), - oss_bucket=kwargs.get("oss_bucket", None), - ) - - return model, kwargs - - def __call__(self, input, input_len=None, **cfg): - if self.vad_model is None: - return self.generate(input, input_len=input_len, **cfg) - - else: - return self.generate_with_vad(input, input_len=input_len, **cfg) - - def generate(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg): - # import pdb; pdb.set_trace() - kwargs = self.kwargs if kwargs is None else kwargs - kwargs.update(cfg) - model = self.model if model is None else model + # if spk_model is not None, build spk model else None + spk_model = kwargs.get("spk_model", None) + spk_kwargs = kwargs.get("spk_model_revision", None) + if spk_model is not None: + spk_kwargs = {"model": spk_model, "model_revision": spk_kwargs} + spk_model, spk_kwargs = self.build_model(**spk_kwargs) + self.cb_model = ClusterBackend() + spk_mode = kwargs.get("spk_mode", 'punc_segment') + if spk_mode not in ["default", "vad_segment", "punc_segment"]: + logging.error("spk_mode should be one of default, vad_segment and punc_segment.") + self.spk_mode = spk_mode + logging.warning("Many to print when using speaker model...") + + self.kwargs = kwargs + self.model = model + self.vad_model = vad_model + self.vad_kwargs = vad_kwargs + self.punc_model = punc_model + self.punc_kwargs = punc_kwargs + self.spk_model = spk_model + self.spk_kwargs = spk_kwargs + + + def build_model(self, **kwargs): + assert "model" in kwargs + if "model_conf" not in kwargs: + logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) + kwargs = download_model(**kwargs) + + set_all_random_seed(kwargs.get("seed", 0)) + + device = kwargs.get("device", "cuda") + if not torch.cuda.is_available() or kwargs.get("ngpu", 0): + device = "cpu" + # kwargs["batch_size"] = 1 + kwargs["device"] = device + + if kwargs.get("ncpu", None): + torch.set_num_threads(kwargs.get("ncpu")) + + # build tokenizer + tokenizer = kwargs.get("tokenizer", None) + if tokenizer is not None: + tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower()) + tokenizer = tokenizer_class(**kwargs["tokenizer_conf"]) + kwargs["tokenizer"] = tokenizer + kwargs["token_list"] = tokenizer.token_list + vocab_size = len(tokenizer.token_list) + else: + vocab_size = -1 + + # build frontend + frontend = kwargs.get("frontend", None) + if frontend is not None: + frontend_class = tables.frontend_classes.get(frontend.lower()) + frontend = frontend_class(**kwargs["frontend_conf"]) + kwargs["frontend"] = frontend + kwargs["input_size"] = frontend.output_size() + + # build model + model_class = tables.model_classes.get(kwargs["model"].lower()) + model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size) + model.eval() + model.to(device) + + # init_param + init_param = kwargs.get("init_param", None) + if init_param is not None: + logging.info(f"Loading pretrained params from {init_param}") + load_pretrained_model( + model=model, + init_param=init_param, + ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False), + oss_bucket=kwargs.get("oss_bucket", None), + ) + + return model, kwargs + + def __call__(self, input, input_len=None, **cfg): + if self.vad_model is None: + return self.generate(input, input_len=input_len, **cfg) + + else: + return self.generate_with_vad(input, input_len=input_len, **cfg) + + def generate(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg): + kwargs = self.kwargs if kwargs is None else kwargs + kwargs.update(cfg) + model = self.model if model is None else model - batch_size = kwargs.get("batch_size", 1) - # if kwargs.get("device", "cpu") == "cpu": - # batch_size = 1 - - key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key) - - speed_stats = {} - asr_result_list = [] - num_samples = len(data_list) - pbar = tqdm(colour="blue", total=num_samples+1, dynamic_ncols=True) - time_speech_total = 0.0 - time_escape_total = 0.0 - for beg_idx in range(0, num_samples, batch_size): - end_idx = min(num_samples, beg_idx + batch_size) - data_batch = data_list[beg_idx:end_idx] - key_batch = key_list[beg_idx:end_idx] - batch = {"data_in": data_batch, "key": key_batch} - if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank - batch["data_in"] = data_batch[0] - batch["data_lengths"] = input_len - - time1 = time.perf_counter() - with torch.no_grad(): - results, meta_data = model.generate(**batch, **kwargs) - time2 = time.perf_counter() - - asr_result_list.extend(results) - pbar.update(1) - - # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() - batch_data_time = meta_data.get("batch_data_time", -1) - time_escape = time2 - time1 - speed_stats["load_data"] = meta_data.get("load_data", 0.0) - speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) - speed_stats["forward"] = f"{time_escape:0.3f}" - speed_stats["batch_size"] = f"{len(results)}" - speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" - description = ( - f"{speed_stats}, " - ) - pbar.set_description(description) - time_speech_total += batch_data_time - time_escape_total += time_escape - - pbar.update(1) - pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") - torch.cuda.empty_cache() - return asr_result_list - - def generate_with_vad(self, input, input_len=None, **cfg): - - # step.1: compute the vad model - model = self.vad_model - kwargs = self.vad_kwargs - kwargs.update(cfg) - beg_vad = time.time() - res = self.generate(input, input_len=input_len, model=model, kwargs=kwargs, **cfg) - end_vad = time.time() - print(f"time cost vad: {end_vad - beg_vad:0.3f}") + batch_size = kwargs.get("batch_size", 1) + # if kwargs.get("device", "cpu") == "cpu": + # batch_size = 1 + + key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key) + + speed_stats = {} + asr_result_list = [] + num_samples = len(data_list) + pbar = tqdm(colour="blue", total=num_samples+1, dynamic_ncols=True) + time_speech_total = 0.0 + time_escape_total = 0.0 + for beg_idx in range(0, num_samples, batch_size): + end_idx = min(num_samples, beg_idx + batch_size) + data_batch = data_list[beg_idx:end_idx] + key_batch = key_list[beg_idx:end_idx] + batch = {"data_in": data_batch, "key": key_batch} + if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank + batch["data_in"] = data_batch[0] + batch["data_lengths"] = input_len + + time1 = time.perf_counter() + with torch.no_grad(): + results, meta_data = model.generate(**batch, **kwargs) + time2 = time.perf_counter() + + asr_result_list.extend(results) + pbar.update(1) + + # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() + batch_data_time = meta_data.get("batch_data_time", -1) + time_escape = time2 - time1 + speed_stats["load_data"] = meta_data.get("load_data", 0.0) + speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) + speed_stats["forward"] = f"{time_escape:0.3f}" + speed_stats["batch_size"] = f"{len(results)}" + speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" + description = ( + f"{speed_stats}, " + ) + pbar.set_description(description) + time_speech_total += batch_data_time + time_escape_total += time_escape + + pbar.update(1) + pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") + torch.cuda.empty_cache() + return asr_result_list + + def generate_with_vad(self, input, input_len=None, **cfg): + + # step.1: compute the vad model + model = self.vad_model + kwargs = self.vad_kwargs + kwargs.update(cfg) + beg_vad = time.time() + res = self.generate(input, input_len=input_len, model=model, kwargs=kwargs, **cfg) + vad_res = res + end_vad = time.time() + print(f"time cost vad: {end_vad - beg_vad:0.3f}") - # step.2 compute asr model - model = self.model - kwargs = self.kwargs - kwargs.update(cfg) - batch_size = int(kwargs.get("batch_size_s", 300))*1000 - batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000 - kwargs["batch_size"] = batch_size - - key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None)) - results_ret_list = [] - time_speech_total_all_samples = 0.0 + # step.2 compute asr model + model = self.model + kwargs = self.kwargs + kwargs.update(cfg) + batch_size = int(kwargs.get("batch_size_s", 300))*1000 + batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000 + kwargs["batch_size"] = batch_size + + key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None)) + results_ret_list = [] + time_speech_total_all_samples = 0.0 - beg_total = time.time() - pbar_total = tqdm(colour="red", total=len(res) + 1, dynamic_ncols=True) - for i in range(len(res)): - key = res[i]["key"] - vadsegments = res[i]["value"] - input_i = data_list[i] - speech = load_audio_text_image_video(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000)) - speech_lengths = len(speech) - n = len(vadsegments) - data_with_index = [(vadsegments[i], i) for i in range(n)] - sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) - results_sorted = [] - - if not len(sorted_data): - logging.info("decoding, utt: {}, empty speech".format(key)) - continue - + beg_total = time.time() + pbar_total = tqdm(colour="red", total=len(res) + 1, dynamic_ncols=True) + for i in range(len(res)): + key = res[i]["key"] + vadsegments = res[i]["value"] + input_i = data_list[i] + speech = load_audio_text_image_video(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000)) + speech_lengths = len(speech) + n = len(vadsegments) + data_with_index = [(vadsegments[i], i) for i in range(n)] + sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) + results_sorted = [] + + if not len(sorted_data): + logging.info("decoding, utt: {}, empty speech".format(key)) + continue + - # if kwargs["device"] == "cpu": - # batch_size = 0 - if len(sorted_data) > 0 and len(sorted_data[0]) > 0: - batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]) - - batch_size_ms_cum = 0 - beg_idx = 0 - beg_asr_total = time.time() - time_speech_total_per_sample = speech_lengths/16000 - time_speech_total_all_samples += time_speech_total_per_sample + # if kwargs["device"] == "cpu": + # batch_size = 0 + if len(sorted_data) > 0 and len(sorted_data[0]) > 0: + batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]) + + batch_size_ms_cum = 0 + beg_idx = 0 + beg_asr_total = time.time() + time_speech_total_per_sample = speech_lengths/16000 + time_speech_total_all_samples += time_speech_total_per_sample - for j, _ in enumerate(range(0, n)): - batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0]) - if j < n - 1 and ( - batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and ( - sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms: - continue - batch_size_ms_cum = 0 - end_idx = j + 1 - speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx]) - beg_idx = end_idx - - results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg) - - if len(results) < 1: - continue - results_sorted.extend(results) + for j, _ in enumerate(range(0, n)): + batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0]) + if j < n - 1 and ( + batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and ( + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms: + continue + batch_size_ms_cum = 0 + end_idx = j + 1 + speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx]) + results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg) + if self.spk_model is not None: + all_segments = [] + # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] + for _b in range(len(speech_j)): + vad_segments = [[sorted_data[beg_idx:end_idx][_b][0][0]/1000.0, \ + sorted_data[beg_idx:end_idx][_b][0][1]/1000.0, \ + speech_j[_b]]] + segments = sv_chunk(vad_segments) + all_segments.extend(segments) + speech_b = [i[2] for i in segments] + spk_res = self.generate(speech_b, input_len=None, model=self.spk_model, kwargs=kwargs, **cfg) + results[_b]['spk_embedding'] = spk_res[0]['spk_embedding'] + beg_idx = end_idx + if len(results) < 1: + continue + results_sorted.extend(results) - pbar_total.update(1) - end_asr_total = time.time() - time_escape_total_per_sample = end_asr_total - beg_asr_total - pbar_total.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " - f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " - f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") + pbar_total.update(1) + end_asr_total = time.time() + time_escape_total_per_sample = end_asr_total - beg_asr_total + pbar_total.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " + f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, " + f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}") - restored_data = [0] * n - for j in range(n): - index = sorted_data[j][1] - restored_data[index] = results_sorted[j] - result = {} - - for j in range(n): - for k, v in restored_data[j].items(): - if not k.startswith("timestamp"): - if k not in result: - result[k] = restored_data[j][k] - else: - result[k] += restored_data[j][k] - else: - result[k] = [] - for t in restored_data[j][k]: - t[0] += vadsegments[j][0] - t[1] += vadsegments[j][0] - result[k] += restored_data[j][k] - - result["key"] = key - results_ret_list.append(result) - pbar_total.update(1) - - # step.3 compute punc model - model = self.punc_model - kwargs = self.punc_kwargs - kwargs.update(cfg) - - for i, result in enumerate(results_ret_list): - beg_punc = time.time() - res = self.generate(result["text"], model=model, kwargs=kwargs, **cfg) - end_punc = time.time() - print(f"time punc: {end_punc - beg_punc:0.3f}") - - # sentences = time_stamp_sentence(model.punc_list, model.sentence_end_id, results_ret_list[i]["timestamp"], res[i]["text"]) - # results_ret_list[i]["time_stamp"] = res[0]["text_postprocessed_punc"] - # results_ret_list[i]["sentences"] = sentences - results_ret_list[i]["text_with_punc"] = res[i]["text"] - - pbar_total.update(1) - end_total = time.time() - time_escape_total_all_samples = end_total - beg_total - pbar_total.set_description(f"rtf_avg_all_samples: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " - f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, " - f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}") - return results_ret_list + restored_data = [0] * n + for j in range(n): + index = sorted_data[j][1] + restored_data[index] = results_sorted[j] + result = {} + + # results combine for texts, timestamps, speaker embeddings and others + # TODO: rewrite for clean code + for j in range(n): + for k, v in restored_data[j].items(): + if k.startswith("timestamp"): + if k not in result: + result[k] = [] + for t in restored_data[j][k]: + t[0] += vadsegments[j][0] + t[1] += vadsegments[j][0] + result[k].extend(restored_data[j][k]) + elif k == 'spk_embedding': + if k not in result: + result[k] = restored_data[j][k] + else: + result[k] = torch.cat([result[k], restored_data[j][k]], dim=0) + elif k == 'text': + if k not in result: + result[k] = restored_data[j][k] + else: + result[k] += " " + restored_data[j][k] + else: + if k not in result: + result[k] = restored_data[j][k] + else: + result[k] += restored_data[j][k] + + # step.3 compute punc model + if self.punc_model is not None: + self.punc_kwargs.update(cfg) + punc_res = self.generate(result["text"], model=self.punc_model, kwargs=self.punc_kwargs, **cfg) + result["text_with_punc"] = punc_res[0]["text"] + + # speaker embedding cluster after resorted + if self.spk_model is not None: + all_segments = sorted(all_segments, key=lambda x: x[0]) + spk_embedding = result['spk_embedding'] + labels = self.cb_model(spk_embedding) + del result['spk_embedding'] + sv_output = postprocess(all_segments, None, labels, spk_embedding) + if self.spk_mode == 'vad_segment': + sentence_list = [] + for res, vadsegment in zip(restored_data, vadsegments): + sentence_list.append({"start": vadsegment[0],\ + "end": vadsegment[1], + "sentence": res['text'], + "timestamp": res['timestamp']}) + else: # punc_segment + sentence_list = timestamp_sentence(punc_res[0]['punc_array'], \ + result['timestamp'], \ + result['text']) + distribute_spk(sentence_list, sv_output) + result['sentence_info'] = sentence_list + + result["key"] = key + results_ret_list.append(result) + pbar_total.update(1) + + pbar_total.update(1) + end_total = time.time() + time_escape_total_all_samples = end_total - beg_total + pbar_total.set_description(f"rtf_avg_all_samples: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, " + f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, " + f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}") + return results_ret_list class AutoFrontend: - def __init__(self, **kwargs): - assert "model" in kwargs - if "model_conf" not in kwargs: - logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) - kwargs = download_model(**kwargs) - - # build frontend - frontend = kwargs.get("frontend", None) - if frontend is not None: - frontend_class = tables.frontend_classes.get(frontend.lower()) - frontend = frontend_class(**kwargs["frontend_conf"]) + def __init__(self, **kwargs): + assert "model" in kwargs + if "model_conf" not in kwargs: + logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms"))) + kwargs = download_model(**kwargs) + + # build frontend + frontend = kwargs.get("frontend", None) + if frontend is not None: + frontend_class = tables.frontend_classes.get(frontend.lower()) + frontend = frontend_class(**kwargs["frontend_conf"]) - self.frontend = frontend - if "frontend" in kwargs: - del kwargs["frontend"] - self.kwargs = kwargs + self.frontend = frontend + if "frontend" in kwargs: + del kwargs["frontend"] + self.kwargs = kwargs - - def __call__(self, input, input_len=None, kwargs=None, **cfg): - - kwargs = self.kwargs if kwargs is None else kwargs - kwargs.update(cfg) + + def __call__(self, input, input_len=None, kwargs=None, **cfg): + + kwargs = self.kwargs if kwargs is None else kwargs + kwargs.update(cfg) - key_list, data_list = prepare_data_iterator(input, input_len=input_len) - batch_size = kwargs.get("batch_size", 1) - device = kwargs.get("device", "cpu") - if device == "cpu": - batch_size = 1 - - meta_data = {} - - result_list = [] - num_samples = len(data_list) - pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True) - - time0 = time.perf_counter() - for beg_idx in range(0, num_samples, batch_size): - end_idx = min(num_samples, beg_idx + batch_size) - data_batch = data_list[beg_idx:end_idx] - key_batch = key_list[beg_idx:end_idx] + key_list, data_list = prepare_data_iterator(input, input_len=input_len) + batch_size = kwargs.get("batch_size", 1) + device = kwargs.get("device", "cpu") + if device == "cpu": + batch_size = 1 + + meta_data = {} + + result_list = [] + num_samples = len(data_list) + pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True) + + time0 = time.perf_counter() + for beg_idx in range(0, num_samples, batch_size): + end_idx = min(num_samples, beg_idx + batch_size) + data_batch = data_list[beg_idx:end_idx] + key_batch = key_list[beg_idx:end_idx] - # extract fbank feats - time1 = time.perf_counter() - audio_sample_list = load_audio_text_image_video(data_batch, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)) - time2 = time.perf_counter() - meta_data["load_data"] = f"{time2 - time1:0.3f}" - speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), - frontend=self.frontend, **kwargs) - time3 = time.perf_counter() - meta_data["extract_feat"] = f"{time3 - time2:0.3f}" - meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 - - speech.to(device=device), speech_lengths.to(device=device) - batch = {"input": speech, "input_len": speech_lengths, "key": key_batch} - result_list.append(batch) - - pbar.update(1) - description = ( - f"{meta_data}, " - ) - pbar.set_description(description) - - time_end = time.perf_counter() - pbar.set_description(f"time escaped total: {time_end - time0:0.3f}") - - return result_list + # extract fbank feats + time1 = time.perf_counter() + audio_sample_list = load_audio_text_image_video(data_batch, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000)) + time2 = time.perf_counter() + meta_data["load_data"] = f"{time2 - time1:0.3f}" + speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), + frontend=self.frontend, **kwargs) + time3 = time.perf_counter() + meta_data["extract_feat"] = f"{time3 - time2:0.3f}" + meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000 + + speech.to(device=device), speech_lengths.to(device=device) + batch = {"input": speech, "input_len": speech_lengths, "key": key_batch} + result_list.append(batch) + + pbar.update(1) + description = ( + f"{meta_data}, " + ) + pbar.set_description(description) + + time_end = time.perf_counter() + pbar.set_description(f"time escaped total: {time_end - time0:0.3f}") + + return result_list if __name__ == '__main__': - main_hydra() \ No newline at end of file + main_hydra() \ No newline at end of file diff --git a/funasr/models/campplus/cluster_backend.py b/funasr/models/campplus/cluster_backend.py new file mode 100644 index 000000000..47b45d2af --- /dev/null +++ b/funasr/models/campplus/cluster_backend.py @@ -0,0 +1,191 @@ +# Copyright (c) Alibaba, Inc. and its affiliates. + +from typing import Any, Dict, Union + +import hdbscan +import numpy as np +import scipy +import sklearn +import umap +from sklearn.cluster._kmeans import k_means +from torch import nn + + +class SpectralCluster: + r"""A spectral clustering mehtod using unnormalized Laplacian of affinity matrix. + This implementation is adapted from https://github.com/speechbrain/speechbrain. + """ + + def __init__(self, min_num_spks=1, max_num_spks=15, pval=0.022): + self.min_num_spks = min_num_spks + self.max_num_spks = max_num_spks + self.pval = pval + + def __call__(self, X, oracle_num=None): + # Similarity matrix computation + sim_mat = self.get_sim_mat(X) + + # Refining similarity matrix with pval + prunned_sim_mat = self.p_pruning(sim_mat) + + # Symmetrization + sym_prund_sim_mat = 0.5 * (prunned_sim_mat + prunned_sim_mat.T) + + # Laplacian calculation + laplacian = self.get_laplacian(sym_prund_sim_mat) + + # Get Spectral Embeddings + emb, num_of_spk = self.get_spec_embs(laplacian, oracle_num) + + # Perform clustering + labels = self.cluster_embs(emb, num_of_spk) + + return labels + + def get_sim_mat(self, X): + # Cosine similarities + M = sklearn.metrics.pairwise.cosine_similarity(X, X) + return M + + def p_pruning(self, A): + if A.shape[0] * self.pval < 6: + pval = 6. / A.shape[0] + else: + pval = self.pval + + n_elems = int((1 - pval) * A.shape[0]) + + # For each row in a affinity matrix + for i in range(A.shape[0]): + low_indexes = np.argsort(A[i, :]) + low_indexes = low_indexes[0:n_elems] + + # Replace smaller similarity values by 0s + A[i, low_indexes] = 0 + return A + + def get_laplacian(self, M): + M[np.diag_indices(M.shape[0])] = 0 + D = np.sum(np.abs(M), axis=1) + D = np.diag(D) + L = D - M + return L + + def get_spec_embs(self, L, k_oracle=None): + lambdas, eig_vecs = scipy.linalg.eigh(L) + + if k_oracle is not None: + num_of_spk = k_oracle + else: + lambda_gap_list = self.getEigenGaps( + lambdas[self.min_num_spks - 1:self.max_num_spks + 1]) + num_of_spk = np.argmax(lambda_gap_list) + self.min_num_spks + + emb = eig_vecs[:, :num_of_spk] + return emb, num_of_spk + + def cluster_embs(self, emb, k): + _, labels, _ = k_means(emb, k) + return labels + + def getEigenGaps(self, eig_vals): + eig_vals_gap_list = [] + for i in range(len(eig_vals) - 1): + gap = float(eig_vals[i + 1]) - float(eig_vals[i]) + eig_vals_gap_list.append(gap) + return eig_vals_gap_list + + +class UmapHdbscan: + r""" + Reference: + - Siqi Zheng, Hongbin Suo. Reformulating Speaker Diarization as Community Detection With + Emphasis On Topological Structure. ICASSP2022 + """ + + def __init__(self, + n_neighbors=20, + n_components=60, + min_samples=10, + min_cluster_size=10, + metric='cosine'): + self.n_neighbors = n_neighbors + self.n_components = n_components + self.min_samples = min_samples + self.min_cluster_size = min_cluster_size + self.metric = metric + + def __call__(self, X): + umap_X = umap.UMAP( + n_neighbors=self.n_neighbors, + min_dist=0.0, + n_components=min(self.n_components, X.shape[0] - 2), + metric=self.metric, + ).fit_transform(X) + labels = hdbscan.HDBSCAN( + min_samples=self.min_samples, + min_cluster_size=self.min_cluster_size, + allow_single_cluster=True).fit_predict(umap_X) + return labels + + +class ClusterBackend(nn.Module): + r"""Perfom clustering for input embeddings and output the labels. + Args: + model_dir: A model dir. + model_config: The model config. + """ + + def __init__(self): + super().__init__() + self.model_config = {'merge_thr':0.78} + # self.other_config = kwargs + + self.spectral_cluster = SpectralCluster() + self.umap_hdbscan_cluster = UmapHdbscan() + + def forward(self, X, **params): + # clustering and return the labels + k = params['oracle_num'] if 'oracle_num' in params else None + assert len( + X.shape + ) == 2, 'modelscope error: the shape of input should be [N, C]' + if X.shape[0] < 20: + return np.zeros(X.shape[0], dtype='int') + if X.shape[0] < 2048 or k is not None: + labels = self.spectral_cluster(X, k) + else: + labels = self.umap_hdbscan_cluster(X) + + if k is None and 'merge_thr' in self.model_config: + labels = self.merge_by_cos(labels, X, + self.model_config['merge_thr']) + + return labels + + def merge_by_cos(self, labels, embs, cos_thr): + # merge the similar speakers by cosine similarity + assert cos_thr > 0 and cos_thr <= 1 + while True: + spk_num = labels.max() + 1 + if spk_num == 1: + break + spk_center = [] + for i in range(spk_num): + spk_emb = embs[labels == i].mean(0) + spk_center.append(spk_emb) + assert len(spk_center) > 0 + spk_center = np.stack(spk_center, axis=0) + norm_spk_center = spk_center / np.linalg.norm( + spk_center, axis=1, keepdims=True) + affinity = np.matmul(norm_spk_center, norm_spk_center.T) + affinity = np.triu(affinity, 1) + spks = np.unravel_index(np.argmax(affinity), affinity.shape) + if affinity[spks] < cos_thr: + break + for i in range(len(labels)): + if labels[i] == spks[1]: + labels[i] = spks[0] + elif labels[i] > spks[1]: + labels[i] -= 1 + return labels diff --git a/funasr/models/campplus/model.py b/funasr/models/campplus/model.py index 84938cc35..7b1e098e5 100644 --- a/funasr/models/campplus/model.py +++ b/funasr/models/campplus/model.py @@ -109,13 +109,9 @@ class CAMPPlus(nn.Module): audio_sample_list = load_audio_text_image_video(data_in, fs=16000, audio_fs=kwargs.get("fs", 16000), data_type="sound") time2 = time.perf_counter() meta_data["load_data"] = f"{time2 - time1:0.3f}" - speech, speech_lengths = extract_feature(audio_sample_list) + speech, speech_lengths, speech_times = extract_feature(audio_sample_list) time3 = time.perf_counter() meta_data["extract_feat"] = f"{time3 - time2:0.3f}" - meta_data["batch_data_time"] = np.array(speech_lengths).sum().item() / 16000.0 - # import pdb; pdb.set_trace() - results = [] - embeddings = self.forward(speech) - for embedding in embeddings: - results.append({"spk_embedding":embedding}) + meta_data["batch_data_time"] = np.array(speech_times).sum().item() / 16000.0 + results = [{"spk_embedding": self.forward(speech)}] return results, meta_data \ No newline at end of file diff --git a/funasr/models/campplus/utils.py b/funasr/models/campplus/utils.py index c86a9f055..996435611 100644 --- a/funasr/models/campplus/utils.py +++ b/funasr/models/campplus/utils.py @@ -2,23 +2,19 @@ # Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import io -from typing import Union - -import librosa as sf -import numpy as np -import torch -import torch.nn.functional as F -import torchaudio.compliance.kaldi as Kaldi -from torch import nn - -import contextlib import os +import torch +import requests import tempfile -from abc import ABCMeta, abstractmethod +import contextlib +import numpy as np +import librosa as sf +from typing import Union from pathlib import Path from typing import Generator, Union - -import requests +from abc import ABCMeta, abstractmethod +import torchaudio.compliance.kaldi as Kaldi +from funasr.models.transformer.utils.nets_utils import pad_list def check_audio_list(audio: list): @@ -40,31 +36,31 @@ def check_audio_list(audio: list): def sv_preprocess(inputs: Union[np.ndarray, list]): - output = [] - for i in range(len(inputs)): - if isinstance(inputs[i], str): - file_bytes = File.read(inputs[i]) - data, fs = sf.load(io.BytesIO(file_bytes), dtype='float32') - if len(data.shape) == 2: - data = data[:, 0] - data = torch.from_numpy(data).unsqueeze(0) - data = data.squeeze(0) - elif isinstance(inputs[i], np.ndarray): - assert len( - inputs[i].shape - ) == 1, 'modelscope error: Input array should be [N, T]' - data = inputs[i] - if data.dtype in ['int16', 'int32', 'int64']: - data = (data / (1 << 15)).astype('float32') - else: - data = data.astype('float32') - data = torch.from_numpy(data) - else: - raise ValueError( - 'modelscope error: The input type is restricted to audio address and nump array.' - ) - output.append(data) - return output + output = [] + for i in range(len(inputs)): + if isinstance(inputs[i], str): + file_bytes = File.read(inputs[i]) + data, fs = sf.load(io.BytesIO(file_bytes), dtype='float32') + if len(data.shape) == 2: + data = data[:, 0] + data = torch.from_numpy(data).unsqueeze(0) + data = data.squeeze(0) + elif isinstance(inputs[i], np.ndarray): + assert len( + inputs[i].shape + ) == 1, 'modelscope error: Input array should be [N, T]' + data = inputs[i] + if data.dtype in ['int16', 'int32', 'int64']: + data = (data / (1 << 15)).astype('float32') + else: + data = data.astype('float32') + data = torch.from_numpy(data) + else: + raise ValueError( + 'modelscope error: The input type is restricted to audio address and nump array.' + ) + output.append(data) + return output def sv_chunk(vad_segments: list, fs = 16000) -> list: @@ -105,15 +101,19 @@ def sv_chunk(vad_segments: list, fs = 16000) -> list: def extract_feature(audio): features = [] + feature_times = [] feature_lengths = [] for au in audio: feature = Kaldi.fbank( au.unsqueeze(0), num_mel_bins=80) feature = feature - feature.mean(dim=0, keepdim=True) - features.append(feature.unsqueeze(0)) - feature_lengths.append(au.shape[0]) - features = torch.cat(features) - return features, feature_lengths + features.append(feature) + feature_times.append(au.shape[0]) + feature_lengths.append(feature.shape[0]) + # padding for batch inference + features_padded = pad_list(features, pad_value=0) + # features = torch.cat(features) + return features_padded, feature_lengths, feature_times def postprocess(segments: list, vad_segments: list, @@ -195,8 +195,8 @@ def smooth(res, mindur=1): def distribute_spk(sentence_list, sd_time_list): sd_sentence_list = [] for d in sentence_list: - sentence_start = d['ts_list'][0][0] - sentence_end = d['ts_list'][-1][1] + sentence_start = d['start'] + sentence_end = d['end'] sentence_spk = 0 max_overlap = 0 for sd_time in sd_time_list: @@ -213,8 +213,6 @@ def distribute_spk(sentence_list, sd_time_list): return sd_sentence_list - - class Storage(metaclass=ABCMeta): """Abstract class of storage. diff --git a/funasr/models/ct_transformer/model.py b/funasr/models/ct_transformer/model.py index e32aa2564..fbf180408 100644 --- a/funasr/models/ct_transformer/model.py +++ b/funasr/models/ct_transformer/model.py @@ -239,6 +239,7 @@ class CTTransformer(nn.Module): cache_pop_trigger_limit = 200 results = [] meta_data = {} + punc_array = None for mini_sentence_i in range(len(mini_sentences)): mini_sentence = mini_sentences[mini_sentence_i] mini_sentence_id = mini_sentences_id[mini_sentence_i] @@ -320,8 +321,13 @@ class CTTransformer(nn.Module): elif new_mini_sentence[-1] != "." and new_mini_sentence[-1] != "?" and len(new_mini_sentence[-1].encode())==1: new_mini_sentence_out = new_mini_sentence + "." new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.sentence_end_id] - - result_i = {"key": key[0], "text": new_mini_sentence_out} + # keep a punctuations array for punc segment + if punc_array is None: + punc_array = punctuations + else: + punc_array = torch.cat([punc_array, punctuations], dim=0) + + result_i = {"key": key[0], "text": new_mini_sentence_out, "punc_array": punc_array} results.append(result_i) return results, meta_data diff --git a/funasr/utils/timestamp_tools.py b/funasr/utils/timestamp_tools.py index 8186dff57..63f179a08 100644 --- a/funasr/utils/timestamp_tools.py +++ b/funasr/utils/timestamp_tools.py @@ -98,14 +98,14 @@ def ts_prediction_lfr6_standard(us_alphas, return res_txt, res -def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed): +def timestamp_sentence(punc_id_list, timestamp_postprocessed, text_postprocessed): punc_list = [',', '。', '?', '、'] res = [] if text_postprocessed is None: return res - if time_stamp_postprocessed is None: + if timestamp_postprocessed is None: return res - if len(time_stamp_postprocessed) == 0: + if len(timestamp_postprocessed) == 0: return res if len(text_postprocessed) == 0: return res @@ -113,23 +113,22 @@ def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocess if punc_id_list is None or len(punc_id_list) == 0: res.append({ 'text': text_postprocessed.split(), - "start": time_stamp_postprocessed[0][0], - "end": time_stamp_postprocessed[-1][1], - 'text_seg': text_postprocessed.split(), - "ts_list": time_stamp_postprocessed, + "start": timestamp_postprocessed[0][0], + "end": timestamp_postprocessed[-1][1], + "timestamp": timestamp_postprocessed, }) return res - if len(punc_id_list) != len(time_stamp_postprocessed): - print(" warning length mistach!!!!!!") + if len(punc_id_list) != len(timestamp_postprocessed): + logging.warning("length mismatch between punc and timestamp") sentence_text = "" sentence_text_seg = "" ts_list = [] - sentence_start = time_stamp_postprocessed[0][0] - sentence_end = time_stamp_postprocessed[0][1] + sentence_start = timestamp_postprocessed[0][0] + sentence_end = timestamp_postprocessed[0][1] texts = text_postprocessed.split() - punc_stamp_text_list = list(zip_longest(punc_id_list, time_stamp_postprocessed, texts, fillvalue=None)) + punc_stamp_text_list = list(zip_longest(punc_id_list, timestamp_postprocessed, texts, fillvalue=None)) for punc_stamp_text in punc_stamp_text_list: - punc_id, time_stamp, text = punc_stamp_text + punc_id, timestamp, text = punc_stamp_text # sentence_text += text if text is not None else '' if text is not None: if 'a' <= text[0] <= 'z' or 'A' <= text[0] <= 'Z': @@ -139,10 +138,10 @@ def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocess else: sentence_text += text sentence_text_seg += text + ' ' - ts_list.append(time_stamp) + ts_list.append(timestamp) punc_id = int(punc_id) if punc_id is not None else 1 - sentence_end = time_stamp[1] if time_stamp is not None else sentence_end + sentence_end = timestamp[1] if timestamp is not None else sentence_end if punc_id > 1: sentence_text += punc_list[punc_id - 2] @@ -150,8 +149,7 @@ def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocess 'text': sentence_text, "start": sentence_start, "end": sentence_end, - "text_seg": sentence_text_seg, - "ts_list": ts_list + "timestamp": ts_list }) sentence_text = '' sentence_text_seg = '' @@ -160,181 +158,4 @@ def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocess return res -# class AverageShiftCalculator(): -# def __init__(self): -# logging.warning("Calculating average shift.") -# def __call__(self, file1, file2): -# uttid_list1, ts_dict1 = self.read_timestamps(file1) -# uttid_list2, ts_dict2 = self.read_timestamps(file2) -# uttid_intersection = self._intersection(uttid_list1, uttid_list2) -# res = self.as_cal(uttid_intersection, ts_dict1, ts_dict2) -# logging.warning("Average shift of {} and {}: {}.".format(file1, file2, str(res)[:8])) -# logging.warning("Following timestamp pair differs most: {}, detail:{}".format(self.max_shift, self.max_shift_uttid)) -# -# def _intersection(self, list1, list2): -# set1 = set(list1) -# set2 = set(list2) -# if set1 == set2: -# logging.warning("Uttid same checked.") -# return set1 -# itsc = list(set1 & set2) -# logging.warning("Uttid differs: file1 {}, file2 {}, lines same {}.".format(len(list1), len(list2), len(itsc))) -# return itsc -# -# def read_timestamps(self, file): -# # read timestamps file in standard format -# uttid_list = [] -# ts_dict = {} -# with codecs.open(file, 'r') as fin: -# for line in fin.readlines(): -# text = '' -# ts_list = [] -# line = line.rstrip() -# uttid = line.split()[0] -# uttid_list.append(uttid) -# body = " ".join(line.split()[1:]) -# for pd in body.split(';'): -# if not len(pd): continue -# # pdb.set_trace() -# char, start, end = pd.lstrip(" ").split(' ') -# text += char + ',' -# ts_list.append((float(start), float(end))) -# # ts_lists.append(ts_list) -# ts_dict[uttid] = (text[:-1], ts_list) -# logging.warning("File {} read done.".format(file)) -# return uttid_list, ts_dict -# -# def _shift(self, filtered_timestamp_list1, filtered_timestamp_list2): -# shift_time = 0 -# for fts1, fts2 in zip(filtered_timestamp_list1, filtered_timestamp_list2): -# shift_time += abs(fts1[0] - fts2[0]) + abs(fts1[1] - fts2[1]) -# num_tokens = len(filtered_timestamp_list1) -# return shift_time, num_tokens -# -# # def as_cal(self, uttid_list, ts_dict1, ts_dict2): -# # # calculate average shift between timestamp1 and timestamp2 -# # # when characters differ, use edit distance alignment -# # # and calculate the error between the same characters -# # self._accumlated_shift = 0 -# # self._accumlated_tokens = 0 -# # self.max_shift = 0 -# # self.max_shift_uttid = None -# # for uttid in uttid_list: -# # (t1, ts1) = ts_dict1[uttid] -# # (t2, ts2) = ts_dict2[uttid] -# # _align, _align2, _align3 = [], [], [] -# # fts1, fts2 = [], [] -# # _t1, _t2 = [], [] -# # sm = edit_distance.SequenceMatcher(t1.split(','), t2.split(',')) -# # s = sm.get_opcodes() -# # for j in range(len(s)): -# # if s[j][0] == "replace" or s[j][0] == "insert": -# # _align.append(0) -# # if s[j][0] == "replace" or s[j][0] == "delete": -# # _align3.append(0) -# # elif s[j][0] == "equal": -# # _align.append(1) -# # _align3.append(1) -# # else: -# # continue -# # # use s to index t2 -# # for a, ts , t in zip(_align, ts2, t2.split(',')): -# # if a: -# # fts2.append(ts) -# # _t2.append(t) -# # sm2 = edit_distance.SequenceMatcher(t2.split(','), t1.split(',')) -# # s = sm2.get_opcodes() -# # for j in range(len(s)): -# # if s[j][0] == "replace" or s[j][0] == "insert": -# # _align2.append(0) -# # elif s[j][0] == "equal": -# # _align2.append(1) -# # else: -# # continue -# # # use s2 tp index t1 -# # for a, ts, t in zip(_align3, ts1, t1.split(',')): -# # if a: -# # fts1.append(ts) -# # _t1.append(t) -# # if len(fts1) == len(fts2): -# # shift_time, num_tokens = self._shift(fts1, fts2) -# # self._accumlated_shift += shift_time -# # self._accumlated_tokens += num_tokens -# # if shift_time/num_tokens > self.max_shift: -# # self.max_shift = shift_time/num_tokens -# # self.max_shift_uttid = uttid -# # else: -# # logging.warning("length mismatch") -# # return self._accumlated_shift / self._accumlated_tokens - - -def convert_external_alphas(alphas_file, text_file, output_file): - from funasr.models.paraformer.cif_predictor import cif_wo_hidden - with open(alphas_file, 'r') as f1, open(text_file, 'r') as f2, open(output_file, 'w') as f3: - for line1, line2 in zip(f1.readlines(), f2.readlines()): - line1 = line1.rstrip() - line2 = line2.rstrip() - assert line1.split()[0] == line2.split()[0] - uttid = line1.split()[0] - alphas = [float(i) for i in line1.split()[1:]] - new_alphas = np.array(remove_chunk_padding(alphas)) - new_alphas[-1] += 1e-4 - text = line2.split()[1:] - if len(text) + 1 != int(new_alphas.sum()): - # force resize - new_alphas *= (len(text) + 1) / int(new_alphas.sum()) - peaks = cif_wo_hidden(torch.Tensor(new_alphas).unsqueeze(0), 1.0-1e-4) - if " " in text: - text = text.split() - else: - text = [i for i in text] - res_str, _ = ts_prediction_lfr6_standard(new_alphas, peaks[0], text, - force_time_shift=-7.0, - sil_in_str=False) - f3.write("{} {}\n".format(uttid, res_str)) - - -def remove_chunk_padding(alphas): - # remove the padding part in alphas if using chunk paraformer for GPU - START_ZERO = 45 - MID_ZERO = 75 - REAL_FRAMES = 360 # for chunk based encoder 10-120-10 and fsmn padding 5 - alphas = alphas[START_ZERO:] # remove the padding at beginning - new_alphas = [] - while True: - new_alphas = new_alphas + alphas[:REAL_FRAMES] - alphas = alphas[REAL_FRAMES+MID_ZERO:] - if len(alphas) < REAL_FRAMES: break - return new_alphas - -SUPPORTED_MODES = ['cal_aas', 'read_ext_alphas'] - - -def main(args): - # if args.mode == 'cal_aas': - # asc = AverageShiftCalculator() - # asc(args.input, args.input2) - if args.mode == 'read_ext_alphas': - convert_external_alphas(args.input, args.input2, args.output) - else: - logging.error("Mode {} not in SUPPORTED_MODES: {}.".format(args.mode, SUPPORTED_MODES)) - - -if __name__ == '__main__': - parser = argparse.ArgumentParser(description='timestamp tools') - parser.add_argument('--mode', - default=None, - type=str, - choices=SUPPORTED_MODES, - help='timestamp related toolbox') - parser.add_argument('--input', default=None, type=str, help='input file path') - parser.add_argument('--output', default=None, type=str, help='output file name') - parser.add_argument('--input2', default=None, type=str, help='input2 file path') - parser.add_argument('--kaldi-ts-type', - default='v2', - type=str, - choices=['v0', 'v1', 'v2'], - help='kaldi timestamp to write') - args = parser.parse_args() - main(args)