TOLD/SOND: remove typeguard dependency. (#801)

This commit is contained in:
Zhihao Du 2023-08-03 10:54:27 +08:00 committed by GitHub
parent c63486e0b9
commit 6fb84e4bf2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 0 additions and 18 deletions

View File

@ -6,8 +6,6 @@ from typing import Union
import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.modules.nets_utils import pad_list, pad_list_all_dim
@ -89,7 +87,6 @@ class DiarCollateFn:
not_sequence: Collection[str] = (),
max_sample_size=None
):
assert check_argument_types()
self.float_pad_value = float_pad_value
self.int_pad_value = int_pad_value
self.not_sequence = set(not_sequence)
@ -120,7 +117,6 @@ def diar_collate_fn(
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
"""Concatenate ndarray-list to an array and convert to torch.Tensor.
"""
assert check_argument_types()
uttids = [u for u, _ in data]
data = [d for _, d in data]
@ -146,7 +142,6 @@ def diar_collate_fn(
output[key + "_lengths"] = lens
output = (uttids, output)
assert check_return_type(output)
return output

View File

@ -1,7 +1,6 @@
import torch
from typing import Optional
from typing import Tuple
from typeguard import check_argument_types
from torch.nn import functional as F
from funasr.modules.nets_utils import make_pad_mask
@ -86,7 +85,6 @@ class LabelAggregateMaxPooling(torch.nn.Module):
self,
hop_length: int = 8,
):
assert check_argument_types()
super().__init__()
self.hop_length = hop_length

View File

@ -13,7 +13,6 @@ from typing import Tuple, List
import numpy as np
import torch
from torch.nn import functional as F
from typeguard import check_argument_types
from funasr.modules.nets_utils import to_device
from funasr.modules.nets_utils import make_pad_mask
@ -69,7 +68,6 @@ class DiarSondModel(FunASRModel):
freeze_encoder: bool = False,
onfly_shuffle_speaker: bool = True,
):
assert check_argument_types()
super().__init__()

View File

@ -13,8 +13,6 @@ from typing import Union
import numpy as np
import torch
import yaml
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.datasets.collate_fn import DiarCollateFn
from funasr.datasets.preprocessor import CommonPreprocessor
@ -341,7 +339,6 @@ class DiarTask(AbsTask):
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
Tuple[List[str], Dict[str, torch.Tensor]],
]:
assert check_argument_types()
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
return DiarCollateFn(float_pad_value=0.0, int_pad_value=-1)
@ -349,7 +346,6 @@ class DiarTask(AbsTask):
def build_preprocess_fn(
cls, args: argparse.Namespace, train: bool
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
assert check_argument_types()
if args.use_preprocessor:
retval = CommonPreprocessor(
train=train,
@ -379,7 +375,6 @@ class DiarTask(AbsTask):
)
else:
retval = None
assert check_return_type(retval)
return retval
@classmethod
@ -398,7 +393,6 @@ class DiarTask(AbsTask):
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
retval = ()
assert check_return_type(retval)
return retval
@classmethod
@ -438,7 +432,6 @@ class DiarTask(AbsTask):
@classmethod
def build_model(cls, args: argparse.Namespace):
assert check_argument_types()
if isinstance(args.token_list, str):
with open(args.token_list, encoding="utf-8") as f:
token_list = [line.rstrip() for line in f]
@ -546,7 +539,6 @@ class DiarTask(AbsTask):
initialize(model, args.init)
logging.info(f"Init model parameters with {args.init}.")
assert check_return_type(model)
return model
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
@ -569,7 +561,6 @@ class DiarTask(AbsTask):
device: Device type, "cpu", "cuda", or "cuda:N".
"""
assert check_argument_types()
if config_file is None:
assert model_file is not None, (
"The argument 'model_file' must be provided "