Merge pull request #234 from alibaba-damo-academy/dev_sx

Dev sx
This commit is contained in:
zhifu gao 2023-03-15 19:11:03 +08:00 committed by GitHub
commit 6f18b5619a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,6 +1,10 @@
import torch
import copy
import codecs
import logging
import edit_distance
import argparse
import pdb
import numpy as np
from typing import Any, List, Tuple, Union
@ -9,7 +13,8 @@ def ts_prediction_lfr6_standard(us_alphas,
us_peaks,
char_list,
vad_offset=0.0,
force_time_shift=-1.5
force_time_shift=-1.5,
sil_in_str=True
):
if not len(char_list):
return []
@ -62,6 +67,8 @@ def ts_prediction_lfr6_standard(us_alphas,
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
res_txt = ""
for char, timestamp in zip(new_char_list, timestamp_list):
#if char != '<sil>':
if not sil_in_str and char == '<sil>': continue
res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
@ -121,4 +128,181 @@ def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocess
return res
class AverageShiftCalculator():
def __init__(self):
logging.warning("Calculating average shift.")
def __call__(self, file1, file2):
uttid_list1, ts_dict1 = self.read_timestamps(file1)
uttid_list2, ts_dict2 = self.read_timestamps(file2)
uttid_intersection = self._intersection(uttid_list1, uttid_list2)
res = self.as_cal(uttid_intersection, ts_dict1, ts_dict2)
logging.warning("Average shift of {} and {}: {}.".format(file1, file2, str(res)[:8]))
logging.warning("Following timestamp pair differs most: {}, detail:{}".format(self.max_shift, self.max_shift_uttid))
def _intersection(self, list1, list2):
set1 = set(list1)
set2 = set(list2)
if set1 == set2:
logging.warning("Uttid same checked.")
return set1
itsc = list(set1 & set2)
logging.warning("Uttid differs: file1 {}, file2 {}, lines same {}.".format(len(list1), len(list2), len(itsc)))
return itsc
def read_timestamps(self, file):
# read timestamps file in standard format
uttid_list = []
ts_dict = {}
with codecs.open(file, 'r') as fin:
for line in fin.readlines():
text = ''
ts_list = []
line = line.rstrip()
uttid = line.split()[0]
uttid_list.append(uttid)
body = " ".join(line.split()[1:])
for pd in body.split(';'):
if not len(pd): continue
# pdb.set_trace()
char, start, end = pd.lstrip(" ").split(' ')
text += char + ','
ts_list.append((float(start), float(end)))
# ts_lists.append(ts_list)
ts_dict[uttid] = (text[:-1], ts_list)
logging.warning("File {} read done.".format(file))
return uttid_list, ts_dict
def _shift(self, filtered_timestamp_list1, filtered_timestamp_list2):
shift_time = 0
for fts1, fts2 in zip(filtered_timestamp_list1, filtered_timestamp_list2):
shift_time += abs(fts1[0] - fts2[0]) + abs(fts1[1] - fts2[1])
num_tokens = len(filtered_timestamp_list1)
return shift_time, num_tokens
def as_cal(self, uttid_list, ts_dict1, ts_dict2):
# calculate average shift between timestamp1 and timestamp2
# when characters differ, use edit distance alignment
# and calculate the error between the same characters
self._accumlated_shift = 0
self._accumlated_tokens = 0
self.max_shift = 0
self.max_shift_uttid = None
for uttid in uttid_list:
(t1, ts1) = ts_dict1[uttid]
(t2, ts2) = ts_dict2[uttid]
_align, _align2, _align3 = [], [], []
fts1, fts2 = [], []
_t1, _t2 = [], []
sm = edit_distance.SequenceMatcher(t1.split(','), t2.split(','))
s = sm.get_opcodes()
for j in range(len(s)):
if s[j][0] == "replace" or s[j][0] == "insert":
_align.append(0)
if s[j][0] == "replace" or s[j][0] == "delete":
_align3.append(0)
elif s[j][0] == "equal":
_align.append(1)
_align3.append(1)
else:
continue
# use s to index t2
for a, ts , t in zip(_align, ts2, t2.split(',')):
if a:
fts2.append(ts)
_t2.append(t)
sm2 = edit_distance.SequenceMatcher(t2.split(','), t1.split(','))
s = sm2.get_opcodes()
for j in range(len(s)):
if s[j][0] == "replace" or s[j][0] == "insert":
_align2.append(0)
elif s[j][0] == "equal":
_align2.append(1)
else:
continue
# use s2 tp index t1
for a, ts, t in zip(_align3, ts1, t1.split(',')):
if a:
fts1.append(ts)
_t1.append(t)
if len(fts1) == len(fts2):
shift_time, num_tokens = self._shift(fts1, fts2)
self._accumlated_shift += shift_time
self._accumlated_tokens += num_tokens
if shift_time/num_tokens > self.max_shift:
self.max_shift = shift_time/num_tokens
self.max_shift_uttid = uttid
else:
logging.warning("length mismatch")
return self._accumlated_shift / self._accumlated_tokens
def convert_external_alphas(alphas_file, text_file, output_file):
from funasr.models.predictor.cif import cif_wo_hidden
with open(alphas_file, 'r') as f1, open(text_file, 'r') as f2, open(output_file, 'w') as f3:
for line1, line2 in zip(f1.readlines(), f2.readlines()):
line1 = line1.rstrip()
line2 = line2.rstrip()
assert line1.split()[0] == line2.split()[0]
uttid = line1.split()[0]
alphas = [float(i) for i in line1.split()[1:]]
new_alphas = np.array(remove_chunk_padding(alphas))
new_alphas[-1] += 1e-4
text = line2.split()[1:]
if len(text) + 1 != int(new_alphas.sum()):
# force resize
new_alphas *= (len(text) + 1) / int(new_alphas.sum())
peaks = cif_wo_hidden(torch.Tensor(new_alphas).unsqueeze(0), 1.0-1e-4)
if " " in text:
text = text.split()
else:
text = [i for i in text]
res_str, _ = ts_prediction_lfr6_standard(new_alphas, peaks[0], text,
force_time_shift=-7.0,
sil_in_str=False)
f3.write("{} {}\n".format(uttid, res_str))
def remove_chunk_padding(alphas):
# remove the padding part in alphas if using chunk paraformer for GPU
START_ZERO = 45
MID_ZERO = 75
REAL_FRAMES = 360 # for chunk based encoder 10-120-10 and fsmn padding 5
alphas = alphas[START_ZERO:] # remove the padding at beginning
new_alphas = []
while True:
new_alphas = new_alphas + alphas[:REAL_FRAMES]
alphas = alphas[REAL_FRAMES+MID_ZERO:]
if len(alphas) < REAL_FRAMES: break
return new_alphas
SUPPORTED_MODES = ['cal_aas', 'read_ext_alphas']
def main(args):
if args.mode == 'cal_aas':
asc = AverageShiftCalculator()
asc(args.input, args.input2)
elif args.mode == 'read_ext_alphas':
convert_external_alphas(args.input, args.input2, args.output)
else:
logging.error("Mode {} not in SUPPORTED_MODES: {}.".format(args.mode, SUPPORTED_MODES))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='timestamp tools')
parser.add_argument('--mode',
default=None,
type=str,
choices=SUPPORTED_MODES,
help='timestamp related toolbox')
parser.add_argument('--input', default=None, type=str, help='input file path')
parser.add_argument('--output', default=None, type=str, help='output file name')
parser.add_argument('--input2', default=None, type=str, help='input2 file path')
parser.add_argument('--kaldi-ts-type',
default='v2',
type=str,
choices=['v0', 'v1', 'v2'],
help='kaldi timestamp to write')
args = parser.parse_args()
main(args)