mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
atsr
This commit is contained in:
parent
d4955ba395
commit
6d7b945710
@ -41,7 +41,7 @@ def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
|
||||
chars = string.ascii_letters + string.digits
|
||||
if isinstance(data_in, str) and data_in.startswith('http'): # url
|
||||
data_in = download_from_url(data_in)
|
||||
pdb.set_trace()
|
||||
|
||||
if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
|
||||
_, file_extension = os.path.splitext(data_in)
|
||||
file_extension = file_extension.lower()
|
||||
|
||||
@ -426,6 +426,7 @@ class LCBNet(nn.Module):
|
||||
tokenizer=tokenizer)
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
pdb.set_trace()
|
||||
audio_sample_list = sample_list[0]
|
||||
ocr_sample_list = sample_list[1]
|
||||
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
|
||||
@ -441,7 +442,7 @@ class LCBNet(nn.Module):
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
if isinstance(encoder_out, tuple):
|
||||
encoder_out = encoder_out[0]
|
||||
|
||||
pdb.set_trace()
|
||||
ocr_list_new = [[x + 1 if x != 0 else x for x in sublist] for sublist in ocr_sample_list]
|
||||
ocr = torch.tensor(ocr_list_new).to(device=kwargs["device"])
|
||||
ocr_lengths = ocr.new_full([1], dtype=torch.long, fill_value=ocr.size(1)).to(device=kwargs["device"])
|
||||
|
||||
@ -31,7 +31,7 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
|
||||
return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs) for audio in data_or_path_or_list]
|
||||
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith('http'): # download url to local file
|
||||
data_or_path_or_list = download_from_url(data_or_path_or_list)
|
||||
pdb.set_trace()
|
||||
|
||||
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
||||
if data_type is None or data_type == "sound":
|
||||
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||||
@ -67,7 +67,7 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
|
||||
else:
|
||||
pass
|
||||
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
|
||||
pdb.set_trace()
|
||||
|
||||
if audio_fs != fs and data_type != "text":
|
||||
resampler = torchaudio.transforms.Resample(audio_fs, fs)
|
||||
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user