mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
334422ead3
commit
6ce4909ecc
@ -290,13 +290,13 @@ class Trainer:
|
||||
self.train_loss_avg = (self.train_loss_avg*batch_idx + loss.detach().cpu().item())/(batch_idx+1)
|
||||
if "acc" in stats:
|
||||
self.train_acc_avg = (self.train_acc_avg * batch_idx + stats["acc"].detach().cpu().item()) / (batch_idx + 1)
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(self.device)
|
||||
train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(self.device)
|
||||
dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
|
||||
self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
|
||||
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
|
||||
# if self.use_ddp or self.use_fsdp:
|
||||
# train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(self.device)
|
||||
# train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(self.device)
|
||||
# dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
|
||||
# dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
|
||||
# self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
|
||||
# self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
|
||||
|
||||
|
||||
# Perform an optimizer step only after accumulating enough gradients
|
||||
@ -412,13 +412,13 @@ class Trainer:
|
||||
self.val_loss_avg = (self.val_loss_avg*batch_idx + loss.detach().cpu().item())/(batch_idx+1)
|
||||
if "acc" in stats:
|
||||
self.val_acc_avg = (self.val_acc_avg * batch_idx + stats["acc"].detach().cpu().item()) / (batch_idx + 1)
|
||||
if self.use_ddp or self.use_fsdp:
|
||||
val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(self.device)
|
||||
val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(self.device)
|
||||
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
|
||||
dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
|
||||
self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
|
||||
self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
|
||||
# if self.use_ddp or self.use_fsdp:
|
||||
# val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(self.device)
|
||||
# val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(self.device)
|
||||
# dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
|
||||
# dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
|
||||
# self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
|
||||
# self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
|
||||
|
||||
batch_num_epoch = -1
|
||||
if hasattr(dataloader_val, "__len__"):
|
||||
|
||||
Loading…
Reference in New Issue
Block a user