update repo

This commit is contained in:
嘉渊 2023-05-15 10:59:59 +08:00
parent 900c628049
commit 688fb902dd
4 changed files with 39 additions and 79 deletions

View File

@ -5,8 +5,6 @@ stop_stage=3
bert_model_root="../../huggingface_models"
bert_model_name="bert-base-chinese"
#bert_model_name="chinese-roberta-wwm-ext"
#bert_model_name="mengzi-bert-base"
raw_dataset_path="../DATA"
model_path=${bert_model_root}/${bert_model_name}
@ -16,7 +14,7 @@ nj=32
for data_set in train dev test;do
scp=$raw_dataset_path/dump/fbank/${data_set}/text
local_scp_dir_raw=$raw_dataset_path/embeds/$bert_model_name/${data_set}
local_scp_dir_raw=${raw_dataset_path}/${data_set}
local_scp_dir=$local_scp_dir_raw/split$nj
local_records_dir=$local_scp_dir_raw/ark

View File

@ -16,12 +16,11 @@ infer_cmd=utils/run.pl
feats_dir="../DATA" #feature output dictionary, for large data
exp_dir="."
lang=zh
dumpdir=dump/fbank
feats_type=fbank
token_type=char
scp=feats.scp
type=kaldi_ark
stage=0
type=sound
scp=wav.scp
speed_perturb="0.9 1.0 1.1"
stage=3
stop_stage=4
skip_extract_embed=false
@ -30,15 +29,14 @@ bert_model_name="bert-base-chinese"
# feature configuration
feats_dim=80
sample_frequency=16000
nj=32
speed_perturb="0.9,1.0,1.1"
nj=64
# data
data_aishell=
raw_data=
data_url=www.openslr.org/resources/33
# exp tag
tag=""
tag="exp1"
. utils/parse_options.sh || exit 1;
@ -53,7 +51,7 @@ valid_set=dev
test_sets="dev test"
asr_config=conf/train_asr_paraformerbert_conformer_12e_6d_2048_256.yaml
model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}"
model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
inference_config=conf/decode_asr_transformer_noctc_1best.yaml
inference_asr_model=valid.acc.ave_10best.pb
@ -70,10 +68,17 @@ else
_ngpu=0
fi
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data Download"
local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
# Data preparation
local/aishell_data_prep.sh ${data_aishell}/data_aishell/wav ${data_aishell}/data_aishell/transcript ${feats_dir}
local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
for x in train dev test; do
cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
@ -83,46 +88,9 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
done
fi
feat_train_dir=${feats_dir}/${dumpdir}/train; mkdir -p ${feat_train_dir}
feat_dev_dir=${feats_dir}/${dumpdir}/dev; mkdir -p ${feat_dev_dir}
feat_test_dir=${feats_dir}/${dumpdir}/test; mkdir -p ${feat_test_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Feature Generation"
# compute fbank features
fbankdir=${feats_dir}/fbank
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} --speed_perturb ${speed_perturb} \
${feats_dir}/data/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train
utils/fix_data_feat.sh ${fbankdir}/train
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \
${feats_dir}/data/dev ${exp_dir}/exp/make_fbank/dev ${fbankdir}/dev
utils/fix_data_feat.sh ${fbankdir}/dev
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \
${feats_dir}/data/test ${exp_dir}/exp/make_fbank/test ${fbankdir}/test
utils/fix_data_feat.sh ${fbankdir}/test
# compute global cmvn
utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} \
${fbankdir}/train ${exp_dir}/exp/make_fbank/train
# apply cmvn
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/train ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/train ${feat_train_dir}
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/dev ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/dev ${feat_dev_dir}
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/test ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/test ${feat_test_dir}
cp ${fbankdir}/train/text ${fbankdir}/train/speech_shape ${fbankdir}/train/text_shape ${feat_train_dir}
cp ${fbankdir}/dev/text ${fbankdir}/dev/speech_shape ${fbankdir}/dev/text_shape ${feat_dev_dir}
cp ${fbankdir}/test/text ${fbankdir}/test/speech_shape ${fbankdir}/test/text_shape ${feat_test_dir}
utils/fix_data_feat.sh ${feat_train_dir}
utils/fix_data_feat.sh ${feat_dev_dir}
utils/fix_data_feat.sh ${feat_test_dir}
#generate ark list
utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_train_dir} ${fbankdir}/train ${feat_train_dir}
utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_dev_dir} ${fbankdir}/dev ${feat_dev_dir}
echo "stage 1: Feature and CMVN Generation"
utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} ${feats_dir}/data/${train_set}
fi
token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt
@ -135,17 +103,9 @@ if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "<blank>" > ${token_list}
echo "<s>" >> ${token_list}
echo "</s>" >> ${token_list}
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/train/text | cut -f 2- -d" " | tr " " "\n" \
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
num_token=$(cat ${token_list} | wc -l)
echo "<unk>" >> ${token_list}
vocab_size=$(cat ${token_list} | wc -l)
awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char
awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/train
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/dev
cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/train
cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/dev
fi
# Training Stage
@ -172,31 +132,22 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
rank=$i
local_rank=$i
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
asr_train_paraformer.py \
train.py \
--task_name asr \
--gpu_id $gpu_id \
--use_preprocessor true \
--token_type char \
--token_list $token_list \
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/${scp},speech,${type} \
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/text,text,text \
--train_data_path_and_name_and_type ${feats_dir}/embeds/${bert_model_name}/${train_set}/embeds.scp,embed,${type} \
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/speech_shape \
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/text_shape.char \
--train_shape_file ${feats_dir}/embeds/${bert_model_name}/${train_set}/embeds.shape \
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/${scp},speech,${type} \
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/text,text,text \
--valid_data_path_and_name_and_type ${feats_dir}/embeds/${bert_model_name}/${valid_set}/embeds.scp,embed,${type} \
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/speech_shape \
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/text_shape.char \
--valid_shape_file ${feats_dir}/embeds/${bert_model_name}/${valid_set}/embeds.shape \
--data_dir ${feats_dir}/data \
--train_set ${train_set} \
--valid_set ${valid_set} \
--cmvn_file ${feats_dir}/data/${train_set}/cmvn/cmvn.mvn \
--speed_perturb ${speed_perturb} \
--resume true \
--output_dir ${exp_dir}/exp/${model_dir} \
--config $asr_config \
--allow_variable_data_keys true \
--input_size $feats_dim \
--ngpu $gpu_num \
--num_worker_count $count \
--multiprocessing_distributed true \
--dist_init_method $init_method \
--dist_world_size $world_size \
--dist_rank $rank \

View File

@ -347,6 +347,12 @@ def get_parser():
default=True,
help="Apply preprocessing to data or not",
)
parser.add_argument(
"--embed_path",
type=str,
default=None,
help="for model which requires embeds",
)
# optimization related
parser.add_argument(

View File

@ -181,6 +181,11 @@ def prepare_data(args, distributed_option):
["{}/{}/wav.scp".format(args.data_dir, args.valid_set), data_names[0], data_types[0]],
["{}/{}/text".format(args.data_dir, args.valid_set), data_names[1], data_types[1]]
]
if args.embed_path is not None:
args.train_data_path_and_name_and_type[0].append(
"{}/embed/kaldi_ark".format(os.path.join(args.embed_path, args.train_set, "embeds.scp")))
args.valid_data_path_and_name_and_type[0].append(
"{}/embed/kaldi_ark".format(os.path.join(args.embed_path, args.dev_set, "embeds.scp")))
else:
args.train_data_file = os.path.join(args.data_dir, args.train_set, "data.list")
args.valid_data_file = os.path.join(args.data_dir, args.valid_set, "data.list")