mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
43c30967b0
commit
68852c3072
259
funasr/utils/build_asr_model.py
Normal file
259
funasr/utils/build_asr_model.py
Normal file
@ -0,0 +1,259 @@
|
||||
import logging
|
||||
|
||||
from funasr.layers.global_mvn import GlobalMVN
|
||||
from funasr.layers.utterance_mvn import UtteranceMVN
|
||||
from funasr.models.ctc import CTC
|
||||
from funasr.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr.models.decoder.contextual_decoder import ContextualParaformerDecoder
|
||||
from funasr.models.decoder.rnn_decoder import RNNDecoder
|
||||
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder, FsmnDecoderSCAMAOpt
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
DynamicConvolution2DTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
LightweightConvolution2DTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
LightweightConvolutionTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
||||
from funasr.models.decoder.transformer_decoder import TransformerDecoder
|
||||
from funasr.models.e2e_asr import ESPnetASRModel
|
||||
from funasr.models.e2e_asr_mfcca import MFCCA
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer, ParaformerBert, BiCifParaformer, ContextualParaformer
|
||||
from funasr.models.e2e_tp import TimestampPredictor
|
||||
from funasr.models.e2e_uni_asr import UniASR
|
||||
from funasr.models.encoder.conformer_encoder import ConformerEncoder
|
||||
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
||||
from funasr.models.encoder.mfcca_encoder import MFCCAEncoder
|
||||
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
||||
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
||||
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
||||
from funasr.models.frontend.default import DefaultFrontend
|
||||
from funasr.models.frontend.default import MultiChannelFrontend
|
||||
from funasr.models.frontend.fused import FusedFrontends
|
||||
from funasr.models.frontend.s3prl import S3prlFrontend
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.frontend.windowing import SlidingWindow
|
||||
from funasr.models.predictor.cif import CifPredictor, CifPredictorV2, CifPredictorV3
|
||||
from funasr.models.specaug.specaug import SpecAug
|
||||
from funasr.models.specaug.specaug import SpecAugLFR
|
||||
from funasr.modules.subsampling import Conv1dSubsampling
|
||||
from funasr.train.class_choices import ClassChoices
|
||||
|
||||
frontend_choices = ClassChoices(
|
||||
name="frontend",
|
||||
classes=dict(
|
||||
default=DefaultFrontend,
|
||||
sliding_window=SlidingWindow,
|
||||
s3prl=S3prlFrontend,
|
||||
fused=FusedFrontends,
|
||||
wav_frontend=WavFrontend,
|
||||
multichannelfrontend=MultiChannelFrontend,
|
||||
),
|
||||
default="default",
|
||||
)
|
||||
specaug_choices = ClassChoices(
|
||||
name="specaug",
|
||||
classes=dict(
|
||||
specaug=SpecAug,
|
||||
specaug_lfr=SpecAugLFR,
|
||||
),
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
normalize_choices = ClassChoices(
|
||||
"normalize",
|
||||
classes=dict(
|
||||
global_mvn=GlobalMVN,
|
||||
utterance_mvn=UtteranceMVN,
|
||||
),
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
model_choices = ClassChoices(
|
||||
"model",
|
||||
classes=dict(
|
||||
asr=ESPnetASRModel,
|
||||
uniasr=UniASR,
|
||||
paraformer=Paraformer,
|
||||
paraformer_bert=ParaformerBert,
|
||||
bicif_paraformer=BiCifParaformer,
|
||||
contextual_paraformer=ContextualParaformer,
|
||||
mfcca=MFCCA,
|
||||
timestamp_prediction=TimestampPredictor,
|
||||
),
|
||||
default="asr",
|
||||
)
|
||||
encoder_choices = ClassChoices(
|
||||
"encoder",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
data2vec_encoder=Data2VecEncoder,
|
||||
mfcca_enc=MFCCAEncoder,
|
||||
),
|
||||
default="rnn",
|
||||
)
|
||||
encoder_choices2 = ClassChoices(
|
||||
"encoder2",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
),
|
||||
default="rnn",
|
||||
)
|
||||
decoder_choices = ClassChoices(
|
||||
"decoder",
|
||||
classes=dict(
|
||||
transformer=TransformerDecoder,
|
||||
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
||||
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
||||
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
||||
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
||||
rnn=RNNDecoder,
|
||||
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
||||
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
||||
paraformer_decoder_san=ParaformerDecoderSAN,
|
||||
contextual_paraformer_decoder=ContextualParaformerDecoder,
|
||||
),
|
||||
default="rnn",
|
||||
)
|
||||
decoder_choices2 = ClassChoices(
|
||||
"decoder2",
|
||||
classes=dict(
|
||||
transformer=TransformerDecoder,
|
||||
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
||||
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
||||
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
||||
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
||||
rnn=RNNDecoder,
|
||||
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
||||
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
||||
),
|
||||
type_check=AbsDecoder,
|
||||
default="rnn",
|
||||
)
|
||||
predictor_choices = ClassChoices(
|
||||
name="predictor",
|
||||
classes=dict(
|
||||
cif_predictor=CifPredictor,
|
||||
ctc_predictor=None,
|
||||
cif_predictor_v2=CifPredictorV2,
|
||||
cif_predictor_v3=CifPredictorV3,
|
||||
),
|
||||
default="cif_predictor",
|
||||
optional=True,
|
||||
)
|
||||
predictor_choices2 = ClassChoices(
|
||||
name="predictor2",
|
||||
classes=dict(
|
||||
cif_predictor=CifPredictor,
|
||||
ctc_predictor=None,
|
||||
cif_predictor_v2=CifPredictorV2,
|
||||
),
|
||||
default="cif_predictor",
|
||||
optional=True,
|
||||
)
|
||||
stride_conv_choices = ClassChoices(
|
||||
name="stride_conv",
|
||||
classes=dict(
|
||||
stride_conv1d=Conv1dSubsampling
|
||||
),
|
||||
default="stride_conv1d",
|
||||
optional=True,
|
||||
)
|
||||
class_choices_list = [
|
||||
# --frontend and --frontend_conf
|
||||
frontend_choices,
|
||||
# --specaug and --specaug_conf
|
||||
specaug_choices,
|
||||
# --normalize and --normalize_conf
|
||||
normalize_choices,
|
||||
# --model and --model_conf
|
||||
model_choices,
|
||||
# --encoder and --encoder_conf
|
||||
encoder_choices,
|
||||
# --decoder and --decoder_conf
|
||||
decoder_choices,
|
||||
# --predictor and --predictor_conf
|
||||
predictor_choices,
|
||||
# --encoder2 and --encoder2_conf
|
||||
encoder_choices2,
|
||||
# --decoder2 and --decoder2_conf
|
||||
decoder_choices2,
|
||||
# --predictor2 and --predictor2_conf
|
||||
predictor_choices2,
|
||||
# --stride_conv and --stride_conv_conf
|
||||
stride_conv_choices,
|
||||
]
|
||||
|
||||
def build_asr_model(args):
|
||||
# token_list
|
||||
if args.token_list is not None:
|
||||
with open(args.token_list) as f:
|
||||
token_list = [line.rstrip() for line in f]
|
||||
args.token_list = list(token_list)
|
||||
vocab_size = len(token_list)
|
||||
logging.info(f"Vocabulary size: {vocab_size}")
|
||||
else:
|
||||
vocab_size = None
|
||||
|
||||
# frontend
|
||||
if args.input_size is None:
|
||||
# Extract features in the model
|
||||
frontend_class = frontend_choices.get_class(args.frontend)
|
||||
if args.frontend == 'wav_frontend':
|
||||
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
||||
else:
|
||||
frontend = frontend_class(**args.frontend_conf)
|
||||
input_size = frontend.output_size()
|
||||
else:
|
||||
# Give features from data-loader
|
||||
args.frontend = None
|
||||
args.frontend_conf = {}
|
||||
frontend = None
|
||||
input_size = args.input_size
|
||||
|
||||
# data augmentation for spectrogram
|
||||
if args.specaug is not None:
|
||||
specaug_class = specaug_choices.get_class(args.specaug)
|
||||
specaug = specaug_class(**args.specaug_conf)
|
||||
else:
|
||||
specaug = None
|
||||
|
||||
# normalization layer
|
||||
if args.normalize is not None:
|
||||
normalize_class = normalize_choices.get_class(args.normalize)
|
||||
normalize = normalize_class(**args.normalize_conf)
|
||||
else:
|
||||
normalize = None
|
||||
|
||||
# encoder
|
||||
encoder_class = encoder_choices.get_class(args.encoder)
|
||||
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
||||
|
||||
# decoder
|
||||
decoder_class = decoder_choices.get_class(args.decoder)
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder.output_size(),
|
||||
**args.decoder_conf,
|
||||
)
|
||||
|
||||
# ctc
|
||||
ctc = CTC(
|
||||
odim=vocab_size, encoder_output_size=encoder.output_size(), **args.ctc_conf
|
||||
)
|
||||
|
||||
if args.model == "asr":
|
||||
model
|
||||
|
||||
|
||||
@ -1,233 +1,10 @@
|
||||
import logging
|
||||
|
||||
from funasr.layers.global_mvn import GlobalMVN
|
||||
from funasr.layers.utterance_mvn import UtteranceMVN
|
||||
from funasr.models.ctc import CTC
|
||||
from funasr.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr.models.decoder.contextual_decoder import ContextualParaformerDecoder
|
||||
from funasr.models.decoder.rnn_decoder import RNNDecoder
|
||||
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder, FsmnDecoderSCAMAOpt
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
DynamicConvolution2DTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
LightweightConvolution2DTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import (
|
||||
LightweightConvolutionTransformerDecoder, # noqa: H301
|
||||
)
|
||||
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
||||
from funasr.models.decoder.transformer_decoder import TransformerDecoder
|
||||
from funasr.models.e2e_asr import ESPnetASRModel
|
||||
from funasr.models.e2e_asr_mfcca import MFCCA
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer, ParaformerBert, BiCifParaformer, ContextualParaformer
|
||||
from funasr.models.e2e_tp import TimestampPredictor
|
||||
from funasr.models.e2e_uni_asr import UniASR
|
||||
from funasr.models.encoder.conformer_encoder import ConformerEncoder
|
||||
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
||||
from funasr.models.encoder.mfcca_encoder import MFCCAEncoder
|
||||
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
||||
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
||||
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
||||
from funasr.models.frontend.default import DefaultFrontend
|
||||
from funasr.models.frontend.default import MultiChannelFrontend
|
||||
from funasr.models.frontend.fused import FusedFrontends
|
||||
from funasr.models.frontend.s3prl import S3prlFrontend
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.frontend.windowing import SlidingWindow
|
||||
from funasr.models.predictor.cif import CifPredictor, CifPredictorV2, CifPredictorV3
|
||||
from funasr.models.specaug.specaug import SpecAug
|
||||
from funasr.models.specaug.specaug import SpecAugLFR
|
||||
from funasr.modules.subsampling import Conv1dSubsampling
|
||||
from funasr.train.class_choices import ClassChoices
|
||||
|
||||
frontend_choices = ClassChoices(
|
||||
name="frontend",
|
||||
classes=dict(
|
||||
default=DefaultFrontend,
|
||||
sliding_window=SlidingWindow,
|
||||
s3prl=S3prlFrontend,
|
||||
fused=FusedFrontends,
|
||||
wav_frontend=WavFrontend,
|
||||
multichannelfrontend=MultiChannelFrontend,
|
||||
),
|
||||
default="default",
|
||||
)
|
||||
specaug_choices = ClassChoices(
|
||||
name="specaug",
|
||||
classes=dict(
|
||||
specaug=SpecAug,
|
||||
specaug_lfr=SpecAugLFR,
|
||||
),
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
normalize_choices = ClassChoices(
|
||||
"normalize",
|
||||
classes=dict(
|
||||
global_mvn=GlobalMVN,
|
||||
utterance_mvn=UtteranceMVN,
|
||||
),
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
model_choices = ClassChoices(
|
||||
"model",
|
||||
classes=dict(
|
||||
asr=ESPnetASRModel,
|
||||
uniasr=UniASR,
|
||||
paraformer=Paraformer,
|
||||
paraformer_bert=ParaformerBert,
|
||||
bicif_paraformer=BiCifParaformer,
|
||||
contextual_paraformer=ContextualParaformer,
|
||||
mfcca=MFCCA,
|
||||
timestamp_prediction=TimestampPredictor,
|
||||
),
|
||||
default="asr",
|
||||
)
|
||||
encoder_choices = ClassChoices(
|
||||
"encoder",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
data2vec_encoder=Data2VecEncoder,
|
||||
mfcca_enc=MFCCAEncoder,
|
||||
),
|
||||
default="rnn",
|
||||
)
|
||||
encoder_choices2 = ClassChoices(
|
||||
"encoder2",
|
||||
classes=dict(
|
||||
conformer=ConformerEncoder,
|
||||
transformer=TransformerEncoder,
|
||||
rnn=RNNEncoder,
|
||||
sanm=SANMEncoder,
|
||||
sanm_chunk_opt=SANMEncoderChunkOpt,
|
||||
),
|
||||
default="rnn",
|
||||
)
|
||||
decoder_choices = ClassChoices(
|
||||
"decoder",
|
||||
classes=dict(
|
||||
transformer=TransformerDecoder,
|
||||
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
||||
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
||||
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
||||
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
||||
rnn=RNNDecoder,
|
||||
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
||||
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
||||
paraformer_decoder_san=ParaformerDecoderSAN,
|
||||
contextual_paraformer_decoder=ContextualParaformerDecoder,
|
||||
),
|
||||
default="rnn",
|
||||
)
|
||||
decoder_choices2 = ClassChoices(
|
||||
"decoder2",
|
||||
classes=dict(
|
||||
transformer=TransformerDecoder,
|
||||
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
||||
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
||||
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
||||
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
||||
rnn=RNNDecoder,
|
||||
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
||||
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
||||
),
|
||||
type_check=AbsDecoder,
|
||||
default="rnn",
|
||||
)
|
||||
predictor_choices = ClassChoices(
|
||||
name="predictor",
|
||||
classes=dict(
|
||||
cif_predictor=CifPredictor,
|
||||
ctc_predictor=None,
|
||||
cif_predictor_v2=CifPredictorV2,
|
||||
cif_predictor_v3=CifPredictorV3,
|
||||
),
|
||||
default="cif_predictor",
|
||||
optional=True,
|
||||
)
|
||||
predictor_choices2 = ClassChoices(
|
||||
name="predictor2",
|
||||
classes=dict(
|
||||
cif_predictor=CifPredictor,
|
||||
ctc_predictor=None,
|
||||
cif_predictor_v2=CifPredictorV2,
|
||||
),
|
||||
default="cif_predictor",
|
||||
optional=True,
|
||||
)
|
||||
stride_conv_choices = ClassChoices(
|
||||
name="stride_conv",
|
||||
classes=dict(
|
||||
stride_conv1d=Conv1dSubsampling
|
||||
),
|
||||
default="stride_conv1d",
|
||||
optional=True,
|
||||
)
|
||||
from funasr.utils.build_asr_model import build_asr_model
|
||||
|
||||
|
||||
def build_model(args):
|
||||
# token_list
|
||||
if args.token_list is not None:
|
||||
with open(args.token_list) as f:
|
||||
token_list = [line.rstrip() for line in f]
|
||||
args.token_list = list(token_list)
|
||||
vocab_size = len(token_list)
|
||||
logging.info(f"Vocabulary size: {vocab_size}")
|
||||
if args.task_name == "asr":
|
||||
model = build_asr_model(args)
|
||||
else:
|
||||
vocab_size = None
|
||||
raise NotImplementedError("Not supported task: {}".format(args.task_name))
|
||||
|
||||
# frontend
|
||||
if args.input_size is None:
|
||||
# Extract features in the model
|
||||
frontend_class = frontend_choices.get_class(args.frontend)
|
||||
if args.frontend == 'wav_frontend':
|
||||
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
||||
else:
|
||||
frontend = frontend_class(**args.frontend_conf)
|
||||
input_size = frontend.output_size()
|
||||
else:
|
||||
# Give features from data-loader
|
||||
args.frontend = None
|
||||
args.frontend_conf = {}
|
||||
frontend = None
|
||||
input_size = args.input_size
|
||||
|
||||
# data augmentation for spectrogram
|
||||
if args.specaug is not None:
|
||||
specaug_class = specaug_choices.get_class(args.specaug)
|
||||
specaug = specaug_class(**args.specaug_conf)
|
||||
else:
|
||||
specaug = None
|
||||
|
||||
# normalization layer
|
||||
if args.normalize is not None:
|
||||
normalize_class = normalize_choices.get_class(args.normalize)
|
||||
normalize = normalize_class(**args.normalize_conf)
|
||||
else:
|
||||
normalize = None
|
||||
|
||||
# encoder
|
||||
encoder_class = encoder_choices.get_class(args.encoder)
|
||||
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
||||
|
||||
# decoder
|
||||
decoder_class = decoder_choices.get_class(args.decoder)
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder.output_size(),
|
||||
**args.decoder_conf,
|
||||
)
|
||||
|
||||
# ctc
|
||||
ctc = CTC(
|
||||
odim=vocab_size, encoder_output_size=encoder.output_size(), **args.ctc_conf
|
||||
)
|
||||
|
||||
|
||||
return model
|
||||
|
||||
Loading…
Reference in New Issue
Block a user