From 6737c14fff2a23cf4cc7d2ae6d5c3bf4a5d12c98 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=98=89=E6=B8=8A?= Date: Thu, 11 May 2023 14:31:01 +0800 Subject: [PATCH] update repo --- egs/aishell/conformer/run.sh | 1 + egs/librispeech_100h/conformer/run.sh | 31 ++++++++++++++------------- 2 files changed, 17 insertions(+), 15 deletions(-) diff --git a/egs/aishell/conformer/run.sh b/egs/aishell/conformer/run.sh index 536d2215b..eb3e13c8e 100755 --- a/egs/aishell/conformer/run.sh +++ b/egs/aishell/conformer/run.sh @@ -177,6 +177,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then --njob ${njob} \ --gpuid_list ${gpuid_list} \ --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ + --cmvn_file ${feats_dir}/data/${train_set}/cmvn/cmvn.mvn \ --key_file "${_logdir}"/keys.JOB.scp \ --asr_train_config "${asr_exp}"/config.yaml \ --asr_model_file "${asr_exp}"/"${inference_asr_model}" \ diff --git a/egs/librispeech_100h/conformer/run.sh b/egs/librispeech_100h/conformer/run.sh index a855daa84..7d6312566 100755 --- a/egs/librispeech_100h/conformer/run.sh +++ b/egs/librispeech_100h/conformer/run.sh @@ -19,8 +19,8 @@ lang=en token_type=bpe type=sound scp=wav.scp -stage=2 -stop_stage=2 +stage=3 +stop_stage=4 # feature configuration feats_dim=80 @@ -89,23 +89,22 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} ${feats_dir}/data/${train_set} fi -dict=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt +token_list=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=${feats_dir}/data/lang_char/${train_set}_${bpemode}${nbpe} -echo "dictionary: ${dict}" +echo "dictionary: ${token_list}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 2: Dictionary and Json Data Preparation" mkdir -p ${feats_dir}/data/lang_char/ - echo "" > ${dict} - echo "" >> ${dict} - echo "" >> ${dict} + echo "" > ${token_list} + echo "" >> ${token_list} + echo "" >> ${token_list} cut -f 2- -d" " ${feats_dir}/data/${train_set}/text > ${feats_dir}/data/lang_char/input.txt local/spm_train.py --input=${feats_dir}/data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 - local/spm_encode.py --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${dict} - echo "" >> ${dict} + local/spm_encode.py --model=${bpemodel}.model --output_format=piece < ${feats_dir}/data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0}' >> ${token_list} + echo "" >> ${token_list} fi - # Training Stage world_size=$gpu_num # run on one machine if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then @@ -123,16 +122,17 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then rank=$i local_rank=$i gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) - asr_train.py \ + train.py \ + --task_name asr \ --gpu_id $gpu_id \ --use_preprocessor true \ --split_with_space false \ --bpemodel ${bpemodel}.model \ --token_type $token_type \ - --dataset_type $dataset_type \ - --token_list $dict \ - --train_data_file $feats_dir/$dumpdir/${train_set}/ark_txt.scp \ - --valid_data_file $feats_dir/$dumpdir/${valid_set}/ark_txt.scp \ + --token_list $token_list \ + --data_dir ${feats_dir}/data \ + --train_set ${train_set} \ + --valid_set ${valid_set} \ --resume true \ --output_dir ${exp_dir}/exp/${model_dir} \ --config $asr_config \ @@ -183,6 +183,7 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then --njob ${njob} \ --gpuid_list ${gpuid_list} \ --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \ + --cmvn_file ${feats_dir}/data/${train_set}/cmvn/cmvn.mvn \ --key_file "${_logdir}"/keys.JOB.scp \ --asr_train_config "${asr_exp}"/config.yaml \ --asr_model_file "${asr_exp}"/"${inference_asr_model}" \