This commit is contained in:
游雁 2024-06-14 11:04:49 +08:00
parent 31c7f02d12
commit 67329a74a5

View File

@ -16,6 +16,7 @@ from funasr.train_utils.device_funcs import force_gatherable
from . import whisper_lib as whisper
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.ctc.ctc import CTC
from funasr.register import tables
@ -1264,7 +1265,7 @@ class SenseVoiceSANM(nn.Module):
if isinstance(task, str):
task = [task]
task = "".join([f"<|{x}|>" for x in task])
sos = kwargs.get("model_conf").get("sos")
if isinstance(sos, str):
initial_prompt = kwargs.get("initial_prompt", f"<|startoftranscript|>{task}")
@ -1278,7 +1279,9 @@ class SenseVoiceSANM(nn.Module):
language = DecodingOptions.get("language", None)
language = None if language == "auto" else language
initial_prompt = kwargs.get("initial_prompt", f"{task}")
initial_prompt_lid = f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
initial_prompt_lid = (
f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
)
initial_prompt_lid_int = tokenizer.encode(initial_prompt_lid, allowed_special="all")
sos_int = [sos] + initial_prompt_lid_int
eos = kwargs.get("model_conf").get("eos")
@ -1311,9 +1314,7 @@ class SenseVoiceSANM(nn.Module):
)
self.beam_search.event_score_ga = DecodingOptions.get("gain_tokens_score", [1, 1, 1, 1])
encoder_out, encoder_out_lens = self.encode(
speech[None, :, :], speech_lengths
)
encoder_out, encoder_out_lens = self.encode(speech[None, :, :], speech_lengths)
if text_token_int is not None:
i = 0
@ -1392,3 +1393,250 @@ class SenseVoiceSANM(nn.Module):
ibest_writer["text"][key[i]] = text
return results, meta_data
from funasr.models.paraformer.search import Hypothesis
from funasr.utils import postprocess_utils
@tables.register("model_classes", "SenseVoiceSANMCTC")
class SenseVoiceSANMCTC(nn.Module):
"""CTC-attention hybrid Encoder-Decoder model"""
def __init__(
self,
specaug: str = None,
specaug_conf: dict = None,
normalize: str = None,
normalize_conf: dict = None,
encoder: str = None,
encoder_conf: dict = None,
ctc_conf: dict = None,
input_size: int = 80,
vocab_size: int = -1,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
length_normalized_loss: bool = False,
**kwargs,
):
super().__init__()
if specaug is not None:
specaug_class = tables.specaug_classes.get(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = tables.normalize_classes.get(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
if ctc_conf is None:
ctc_conf = {}
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf)
self.blank_id = blank_id
self.sos = sos if sos is not None else vocab_size - 1
self.eos = eos if eos is not None else vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.specaug = specaug
self.normalize = normalize
self.encoder = encoder
self.error_calculator = None
self.ctc = ctc
self.length_normalized_loss = length_normalized_loss
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
):
"""Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
# import pdb;
# pdb.set_trace()
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
stats = dict()
loss_ctc, cer_ctc = self._calc_ctc_loss(encoder_out, encoder_out_lens, text, text_lengths)
loss = loss_ctc
# Collect total loss stats
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + 1).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def encode(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
**kwargs,
):
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
ind: int
"""
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
# Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim2)
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
return encoder_out, encoder_out_lens
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
if kwargs.get("batch_size", 1) > 1:
raise NotImplementedError("batch decoding is not implemented")
meta_data = {}
if (
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is None:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# c. Passed the encoder result and the beam search
ctc_logits = self.ctc.log_softmax(encoder_out)
results = []
b, n, d = encoder_out.size()
if isinstance(key[0], (list, tuple)):
key = key[0]
if len(key) < b:
key = key * b
for i in range(b):
x = ctc_logits[i, : encoder_out_lens[i], :]
yseq = x.argmax(dim=-1)
yseq = torch.unique_consecutive(yseq, dim=-1)
yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device)
nbest_hyps = [Hypothesis(yseq=yseq)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
)
)
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
result_i = {"key": key[i], "token": token, "text": text_postprocessed}
results.append(result_i)
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text_postprocessed
return results, meta_data