mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
decoding
This commit is contained in:
parent
31c7f02d12
commit
67329a74a5
@ -16,6 +16,7 @@ from funasr.train_utils.device_funcs import force_gatherable
|
||||
from . import whisper_lib as whisper
|
||||
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
from funasr.register import tables
|
||||
|
||||
@ -1264,7 +1265,7 @@ class SenseVoiceSANM(nn.Module):
|
||||
if isinstance(task, str):
|
||||
task = [task]
|
||||
task = "".join([f"<|{x}|>" for x in task])
|
||||
|
||||
|
||||
sos = kwargs.get("model_conf").get("sos")
|
||||
if isinstance(sos, str):
|
||||
initial_prompt = kwargs.get("initial_prompt", f"<|startoftranscript|>{task}")
|
||||
@ -1278,7 +1279,9 @@ class SenseVoiceSANM(nn.Module):
|
||||
language = DecodingOptions.get("language", None)
|
||||
language = None if language == "auto" else language
|
||||
initial_prompt = kwargs.get("initial_prompt", f"{task}")
|
||||
initial_prompt_lid = f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
|
||||
initial_prompt_lid = (
|
||||
f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
|
||||
)
|
||||
initial_prompt_lid_int = tokenizer.encode(initial_prompt_lid, allowed_special="all")
|
||||
sos_int = [sos] + initial_prompt_lid_int
|
||||
eos = kwargs.get("model_conf").get("eos")
|
||||
@ -1311,9 +1314,7 @@ class SenseVoiceSANM(nn.Module):
|
||||
)
|
||||
self.beam_search.event_score_ga = DecodingOptions.get("gain_tokens_score", [1, 1, 1, 1])
|
||||
|
||||
encoder_out, encoder_out_lens = self.encode(
|
||||
speech[None, :, :], speech_lengths
|
||||
)
|
||||
encoder_out, encoder_out_lens = self.encode(speech[None, :, :], speech_lengths)
|
||||
|
||||
if text_token_int is not None:
|
||||
i = 0
|
||||
@ -1392,3 +1393,250 @@ class SenseVoiceSANM(nn.Module):
|
||||
ibest_writer["text"][key[i]] = text
|
||||
|
||||
return results, meta_data
|
||||
|
||||
|
||||
from funasr.models.paraformer.search import Hypothesis
|
||||
from funasr.utils import postprocess_utils
|
||||
|
||||
|
||||
@tables.register("model_classes", "SenseVoiceSANMCTC")
|
||||
class SenseVoiceSANMCTC(nn.Module):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
specaug: str = None,
|
||||
specaug_conf: dict = None,
|
||||
normalize: str = None,
|
||||
normalize_conf: dict = None,
|
||||
encoder: str = None,
|
||||
encoder_conf: dict = None,
|
||||
ctc_conf: dict = None,
|
||||
input_size: int = 80,
|
||||
vocab_size: int = -1,
|
||||
ignore_id: int = -1,
|
||||
blank_id: int = 0,
|
||||
sos: int = 1,
|
||||
eos: int = 2,
|
||||
length_normalized_loss: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
|
||||
if specaug is not None:
|
||||
specaug_class = tables.specaug_classes.get(specaug)
|
||||
specaug = specaug_class(**specaug_conf)
|
||||
if normalize is not None:
|
||||
normalize_class = tables.normalize_classes.get(normalize)
|
||||
normalize = normalize_class(**normalize_conf)
|
||||
encoder_class = tables.encoder_classes.get(encoder)
|
||||
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
||||
encoder_output_size = encoder.output_size()
|
||||
|
||||
if ctc_conf is None:
|
||||
ctc_conf = {}
|
||||
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf)
|
||||
|
||||
self.blank_id = blank_id
|
||||
self.sos = sos if sos is not None else vocab_size - 1
|
||||
self.eos = eos if eos is not None else vocab_size - 1
|
||||
self.vocab_size = vocab_size
|
||||
self.ignore_id = ignore_id
|
||||
self.specaug = specaug
|
||||
self.normalize = normalize
|
||||
self.encoder = encoder
|
||||
self.error_calculator = None
|
||||
|
||||
self.ctc = ctc
|
||||
|
||||
self.length_normalized_loss = length_normalized_loss
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
**kwargs,
|
||||
):
|
||||
"""Encoder + Decoder + Calc loss
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch, )
|
||||
text: (Batch, Length)
|
||||
text_lengths: (Batch,)
|
||||
"""
|
||||
# import pdb;
|
||||
# pdb.set_trace()
|
||||
if len(text_lengths.size()) > 1:
|
||||
text_lengths = text_lengths[:, 0]
|
||||
if len(speech_lengths.size()) > 1:
|
||||
speech_lengths = speech_lengths[:, 0]
|
||||
|
||||
batch_size = speech.shape[0]
|
||||
|
||||
# 1. Encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
|
||||
loss_ctc, cer_ctc = None, None
|
||||
stats = dict()
|
||||
|
||||
loss_ctc, cer_ctc = self._calc_ctc_loss(encoder_out, encoder_out_lens, text, text_lengths)
|
||||
|
||||
loss = loss_ctc
|
||||
|
||||
# Collect total loss stats
|
||||
stats["loss"] = torch.clone(loss.detach())
|
||||
|
||||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||||
if self.length_normalized_loss:
|
||||
batch_size = int((text_lengths + 1).sum())
|
||||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def encode(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
**kwargs,
|
||||
):
|
||||
"""Frontend + Encoder. Note that this method is used by asr_inference.py
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch, )
|
||||
ind: int
|
||||
"""
|
||||
|
||||
# Data augmentation
|
||||
if self.specaug is not None and self.training:
|
||||
speech, speech_lengths = self.specaug(speech, speech_lengths)
|
||||
|
||||
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||||
if self.normalize is not None:
|
||||
speech, speech_lengths = self.normalize(speech, speech_lengths)
|
||||
|
||||
# Forward encoder
|
||||
# feats: (Batch, Length, Dim)
|
||||
# -> encoder_out: (Batch, Length2, Dim2)
|
||||
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def _calc_ctc_loss(
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
ys_pad: torch.Tensor,
|
||||
ys_pad_lens: torch.Tensor,
|
||||
):
|
||||
# Calc CTC loss
|
||||
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
|
||||
|
||||
# Calc CER using CTC
|
||||
cer_ctc = None
|
||||
if not self.training and self.error_calculator is not None:
|
||||
ys_hat = self.ctc.argmax(encoder_out).data
|
||||
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
|
||||
return loss_ctc, cer_ctc
|
||||
|
||||
def inference(
|
||||
self,
|
||||
data_in,
|
||||
data_lengths=None,
|
||||
key: list = None,
|
||||
tokenizer=None,
|
||||
frontend=None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
if kwargs.get("batch_size", 1) > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
|
||||
meta_data = {}
|
||||
if (
|
||||
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
|
||||
): # fbank
|
||||
speech, speech_lengths = data_in, data_lengths
|
||||
if len(speech.shape) < 3:
|
||||
speech = speech[None, :, :]
|
||||
if speech_lengths is None:
|
||||
speech_lengths = speech.shape[1]
|
||||
else:
|
||||
# extract fbank feats
|
||||
time1 = time.perf_counter()
|
||||
audio_sample_list = load_audio_text_image_video(
|
||||
data_in,
|
||||
fs=frontend.fs,
|
||||
audio_fs=kwargs.get("fs", 16000),
|
||||
data_type=kwargs.get("data_type", "sound"),
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
speech, speech_lengths = extract_fbank(
|
||||
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
|
||||
)
|
||||
time3 = time.perf_counter()
|
||||
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
||||
meta_data["batch_data_time"] = (
|
||||
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
||||
)
|
||||
|
||||
speech = speech.to(device=kwargs["device"])
|
||||
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
||||
# Encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
if isinstance(encoder_out, tuple):
|
||||
encoder_out = encoder_out[0]
|
||||
|
||||
# c. Passed the encoder result and the beam search
|
||||
ctc_logits = self.ctc.log_softmax(encoder_out)
|
||||
|
||||
results = []
|
||||
b, n, d = encoder_out.size()
|
||||
if isinstance(key[0], (list, tuple)):
|
||||
key = key[0]
|
||||
if len(key) < b:
|
||||
key = key * b
|
||||
for i in range(b):
|
||||
x = ctc_logits[i, : encoder_out_lens[i], :]
|
||||
yseq = x.argmax(dim=-1)
|
||||
yseq = torch.unique_consecutive(yseq, dim=-1)
|
||||
yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device)
|
||||
nbest_hyps = [Hypothesis(yseq=yseq)]
|
||||
|
||||
for nbest_idx, hyp in enumerate(nbest_hyps):
|
||||
ibest_writer = None
|
||||
if kwargs.get("output_dir") is not None:
|
||||
if not hasattr(self, "writer"):
|
||||
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
||||
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
if isinstance(hyp.yseq, list):
|
||||
token_int = hyp.yseq[1:last_pos]
|
||||
else:
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(
|
||||
filter(
|
||||
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
|
||||
)
|
||||
)
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = tokenizer.ids2tokens(token_int)
|
||||
text = tokenizer.tokens2text(token)
|
||||
|
||||
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
|
||||
result_i = {"key": key[i], "token": token, "text": text_postprocessed}
|
||||
results.append(result_i)
|
||||
|
||||
if ibest_writer is not None:
|
||||
ibest_writer["token"][key[i]] = " ".join(token)
|
||||
ibest_writer["text"][key[i]] = text_postprocessed
|
||||
|
||||
return results, meta_data
|
||||
|
||||
Loading…
Reference in New Issue
Block a user