This commit is contained in:
九耳 2023-04-27 17:52:10 +08:00
parent a17c7f2ed5
commit 610b3b35e4
4 changed files with 202 additions and 0 deletions

View File

@ -0,0 +1,112 @@
# Punctuation Restoration
# Voice Activity Detection
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetune. Here we take the model of the punctuation model of CT-Transformer as example to demonstrate the usage.
## Inference
### Quick start
#### [CT-Transformer model](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
model_revision=None)
rec_result = inference_pipline(text_in='example/punc_example.txt')
print(rec_result)
```
- text二进制数据例如用户直接从文件里读出bytes数据
```python
rec_result = inference_pipline(text_in='我们都是木头人不会讲话不会动')
```
- text文件url例如https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt
```python
rec_result = inference_pipline(text_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt')
```
#### [CT-Transformer Realtime model](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727',
model_revision=None,
)
inputs = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
vads = inputs.split("|")
rec_result_all="outputs:"
param_dict = {"cache": []}
for vad in vads:
rec_result = inference_pipeline(text_in=vad, param_dict=param_dict)
rec_result_all += rec_result['text']
print(rec_result_all)
```
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/238)
#### API-reference
##### Define pipeline
- `task`: `Tasks.punctuation`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
- `output_dir`: `None` (Default), the output path of results if set
- `model_revision`: `None` (Default), setting the model version
##### Infer pipeline
- `text_in`: the input to decode, which could be:
- text bytes, `e.g.`: "我们都是木头人不会讲话不会动"
- text file, `e.g.`: example/punc_example.txt
In this case of `text file` input, `output_dir` must be set to save the output results
- `param_dict`: reserving the cache which is necessary in realtime mode.
### Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes [egs_modelscope/punc/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/punc/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model.
- Setting parameters in `infer.sh`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `data_dir`: the dataset dir needs to include `punc.txt`
- `output_dir`: output dir of the recognition results
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
- `checkpoint_name`: only used for infer finetuned models, `punc.pb` (Default), which checkpoint is used to infer
- Decode with multi GPUs:
```shell
bash infer.sh \
--model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
```
- Decode with multi-thread CPUs:
```shell
bash infer.sh \
--model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
```
## Finetune with pipeline
### Quick start
### Finetune with your data
## Inference with your finetuned model

View File

@ -0,0 +1,23 @@
import os
import shutil
import argparse
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
def modelscope_infer(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid)
inference_pipeline = pipeline(
task=Tasks.punctuation,
model=args.model,
output_dir=args.output_dir,
)
inference_pipeline(text_in=args.text_in)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch")
parser.add_argument('--text_in', type=str, default="./data/test/punc.txt")
parser.add_argument('--output_dir', type=str, default="./results/")
parser.add_argument('--gpuid', type=str, default="0")
args = parser.parse_args()
modelscope_infer(args)

View File

@ -0,0 +1,66 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
data_dir="./data/test"
output_dir="./results"
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="punc.pb"
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/text.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/punc.txt ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--text_in ${output_dir}/split/text.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--gpuid ${gpuid}
}&
done
wait
mkdir -p ${output_dir}/final_res
if [ -f "${output_dir}/output.1/output.res" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/output.res"
done | sort -k1 >"${output_dir}/output.res"
fi
fi

View File

@ -0,0 +1 @@
../../../egs/aishell/transformer/utils