From 6086ff54e3d93dd2e465e152e7214dce7695371d Mon Sep 17 00:00:00 2001 From: Chong Zhang Date: Thu, 29 Jun 2023 16:32:14 +0800 Subject: [PATCH] update speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch (#688) * update speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch finetune & infer scripts * update speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch --- .../finetune.py | 38 +------------------ .../infer.py | 33 +--------------- 2 files changed, 3 insertions(+), 68 deletions(-) diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/finetune.py b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/finetune.py index 0393212e4..79fd34de4 100644 --- a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/finetune.py +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/finetune.py @@ -1,5 +1,4 @@ import os -<<<<<<< HEAD from modelscope.metainfo import Trainers from modelscope.trainers import build_trainer @@ -21,50 +20,17 @@ def modelscope_finetune(params): batch_bins=params.batch_bins, max_epoch=params.max_epoch, lr=params.lr) -======= -from modelscope.metainfo import Trainers -from modelscope.trainers import build_trainer -from funasr.datasets.ms_dataset import MsDataset - - -def modelscope_finetune(params): - if not os.path.exists(params["output_dir"]): - os.makedirs(params["output_dir"], exist_ok=True) - # dataset split ["train", "validation"] - ds_dict = MsDataset.load(params["data_dir"]) - kwargs = dict( - model=params["model"], - model_revision=params["model_revision"], - data_dir=ds_dict, - dataset_type=params["dataset_type"], - work_dir=params["output_dir"], - batch_bins=params["batch_bins"], - max_epoch=params["max_epoch"], - lr=params["lr"]) ->>>>>>> main trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs) trainer.train() if __name__ == '__main__': -<<<<<<< HEAD params = modelscope_args(model="damo/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch", data_path="./data") params.output_dir = "./checkpoint" # m模型保存路径 params.data_path = "./example_data/" # 数据路径 params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒, - params.max_epoch = 50 # 最大训练轮数 + params.max_epoch = 20 # 最大训练轮数 params.lr = 0.00005 # 设置学习率 -======= - params = {} - params["output_dir"] = "./checkpoint" - params["data_dir"] = "./data" - params["batch_bins"] = 2000 - params["dataset_type"] = "small" - params["max_epoch"] = 50 - params["lr"] = 0.00005 - params["model"] = "damo/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch" - params["model_revision"] = None ->>>>>>> main - modelscope_finetune(params) + modelscope_finetune(params) \ No newline at end of file diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/infer.py b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/infer.py index a0f096593..da8859eb0 100644 --- a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/infer.py +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch/infer.py @@ -1,33 +1,3 @@ -<<<<<<< HEAD -import os -import shutil -import argparse -from modelscope.pipelines import pipeline -from modelscope.utils.constant import Tasks - -def modelscope_infer(args): - os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpuid) - inference_pipeline = pipeline( - task=Tasks.auto_speech_recognition, - model=args.model, - output_dir=args.output_dir, - batch_size=args.batch_size, - param_dict={"decoding_model": args.decoding_mode, "hotword": args.hotword_txt} - ) - inference_pipeline(audio_in=args.audio_in) - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument('--model', type=str, default="damo/speech_UniASR_asr_2pass-tr-16k-common-vocab1582-pytorch") - parser.add_argument('--audio_in', type=str, default="./data/test/wav.scp") - parser.add_argument('--output_dir', type=str, default="./results/") - parser.add_argument('--decoding_mode', type=str, default="normal") - parser.add_argument('--hotword_txt', type=str, default=None) - parser.add_argument('--batch_size', type=int, default=64) - parser.add_argument('--gpuid', type=str, default="0") - args = parser.parse_args() - modelscope_infer(args) -======= from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks @@ -40,5 +10,4 @@ if __name__ == "__main__": output_dir=output_dir, ) rec_result = inference_pipeline(audio_in=audio_in, param_dict={"decoding_model":"offline"}) - print(rec_result) ->>>>>>> main + print(rec_result) \ No newline at end of file