mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
amp pipeline
This commit is contained in:
parent
544b798b32
commit
6023271be6
@ -41,16 +41,7 @@ from funasr.utils.types import str_or_none
|
||||
from funasr.utils import asr_utils, wav_utils, postprocess_utils
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
|
||||
|
||||
|
||||
header_colors = '\033[95m'
|
||||
end_colors = '\033[0m'
|
||||
|
||||
global_asr_language: str = 'zh-cn'
|
||||
global_sample_rate: Union[int, Dict[Any, int]] = {
|
||||
'audio_fs': 16000,
|
||||
'model_fs': 16000
|
||||
}
|
||||
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
||||
|
||||
|
||||
class Speech2Text:
|
||||
@ -346,6 +337,160 @@ class Speech2Text:
|
||||
# assert check_return_type(results)
|
||||
return results
|
||||
|
||||
class Speech2TextExport(torch.nn.Module):
|
||||
"""Speech2TextExport class
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
asr_train_config: Union[Path, str] = None,
|
||||
asr_model_file: Union[Path, str] = None,
|
||||
cmvn_file: Union[Path, str] = None,
|
||||
lm_train_config: Union[Path, str] = None,
|
||||
lm_file: Union[Path, str] = None,
|
||||
token_type: str = None,
|
||||
bpemodel: str = None,
|
||||
device: str = "cpu",
|
||||
maxlenratio: float = 0.0,
|
||||
minlenratio: float = 0.0,
|
||||
dtype: str = "float32",
|
||||
beam_size: int = 20,
|
||||
ctc_weight: float = 0.5,
|
||||
lm_weight: float = 1.0,
|
||||
ngram_weight: float = 0.9,
|
||||
penalty: float = 0.0,
|
||||
nbest: int = 1,
|
||||
frontend_conf: dict = None,
|
||||
hotword_list_or_file: str = None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
# 1. Build ASR model
|
||||
asr_model, asr_train_args = ASRTask.build_model_from_file(
|
||||
asr_train_config, asr_model_file, cmvn_file, device
|
||||
)
|
||||
frontend = None
|
||||
if asr_train_args.frontend is not None and asr_train_args.frontend_conf is not None:
|
||||
frontend = WavFrontend(cmvn_file=cmvn_file, **asr_train_args.frontend_conf)
|
||||
|
||||
logging.info("asr_model: {}".format(asr_model))
|
||||
logging.info("asr_train_args: {}".format(asr_train_args))
|
||||
asr_model.to(dtype=getattr(torch, dtype)).eval()
|
||||
|
||||
token_list = asr_model.token_list
|
||||
|
||||
|
||||
|
||||
logging.info(f"Decoding device={device}, dtype={dtype}")
|
||||
|
||||
# 5. [Optional] Build Text converter: e.g. bpe-sym -> Text
|
||||
if token_type is None:
|
||||
token_type = asr_train_args.token_type
|
||||
if bpemodel is None:
|
||||
bpemodel = asr_train_args.bpemodel
|
||||
|
||||
if token_type is None:
|
||||
tokenizer = None
|
||||
elif token_type == "bpe":
|
||||
if bpemodel is not None:
|
||||
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
|
||||
else:
|
||||
tokenizer = None
|
||||
else:
|
||||
tokenizer = build_tokenizer(token_type=token_type)
|
||||
converter = TokenIDConverter(token_list=token_list)
|
||||
logging.info(f"Text tokenizer: {tokenizer}")
|
||||
|
||||
# self.asr_model = asr_model
|
||||
self.asr_train_args = asr_train_args
|
||||
self.converter = converter
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.nbest = nbest
|
||||
self.frontend = frontend
|
||||
|
||||
model = Paraformer_export(asr_model, onnx=False)
|
||||
self.asr_model = model
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None
|
||||
):
|
||||
"""Inference
|
||||
|
||||
Args:
|
||||
speech: Input speech data
|
||||
Returns:
|
||||
text, token, token_int, hyp
|
||||
|
||||
"""
|
||||
assert check_argument_types()
|
||||
|
||||
# Input as audio signal
|
||||
if isinstance(speech, np.ndarray):
|
||||
speech = torch.tensor(speech)
|
||||
|
||||
if self.frontend is not None:
|
||||
feats, feats_len = self.frontend.forward(speech, speech_lengths)
|
||||
feats = to_device(feats, device=self.device)
|
||||
feats_len = feats_len.int()
|
||||
self.asr_model.frontend = None
|
||||
else:
|
||||
feats = speech
|
||||
feats_len = speech_lengths
|
||||
|
||||
enc_len_batch_total = feats_len.sum()
|
||||
lfr_factor = max(1, (feats.size()[-1] // 80) - 1)
|
||||
batch = {"speech": feats, "speech_lengths": feats_len}
|
||||
|
||||
# a. To device
|
||||
batch = to_device(batch, device=self.device)
|
||||
|
||||
decoder_outs = self.asr_model(**batch)
|
||||
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
|
||||
|
||||
results = []
|
||||
b, n, d = decoder_out.size()
|
||||
for i in range(b):
|
||||
am_scores = decoder_out[i, :ys_pad_lens[i], :]
|
||||
|
||||
yseq = am_scores.argmax(dim=-1)
|
||||
score = am_scores.max(dim=-1)[0]
|
||||
score = torch.sum(score, dim=-1)
|
||||
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||||
yseq = torch.tensor(
|
||||
yseq.tolist(), device=yseq.device
|
||||
)
|
||||
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
|
||||
|
||||
for hyp in nbest_hyps:
|
||||
assert isinstance(hyp, (Hypothesis)), type(hyp)
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
if isinstance(hyp.yseq, list):
|
||||
token_int = hyp.yseq[1:last_pos]
|
||||
else:
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(filter(lambda x: x != 0 and x != 2, token_int))
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
|
||||
if self.tokenizer is not None:
|
||||
text = self.tokenizer.tokens2text(token)
|
||||
else:
|
||||
text = None
|
||||
|
||||
results.append((text, token, token_int, hyp, enc_len_batch_total, lfr_factor))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
@ -454,9 +599,11 @@ def inference_modelscope(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
|
||||
export_mode = False
|
||||
if param_dict is not None:
|
||||
hotword_list_or_file = param_dict.get('hotword')
|
||||
export_mode = param_dict.get("export_mode", False)
|
||||
else:
|
||||
hotword_list_or_file = None
|
||||
|
||||
@ -490,7 +637,10 @@ def inference_modelscope(
|
||||
nbest=nbest,
|
||||
hotword_list_or_file=hotword_list_or_file,
|
||||
)
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
if export_mode:
|
||||
speech2text = Speech2TextExport(**speech2text_kwargs)
|
||||
else:
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
|
||||
def _forward(
|
||||
data_path_and_name_and_type,
|
||||
|
||||
@ -44,6 +44,7 @@ class ASRModelExportParaformer:
|
||||
model,
|
||||
self.export_config,
|
||||
)
|
||||
model.eval()
|
||||
# self._export_onnx(model, verbose, export_dir)
|
||||
if self.onnx:
|
||||
self._export_onnx(model, verbose, export_dir)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user