mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
add training related code for sond
This commit is contained in:
parent
0f6296ff12
commit
5da92c1fa9
@ -79,4 +79,4 @@ class LabelAggregate(torch.nn.Module):
|
||||
else:
|
||||
olens = None
|
||||
|
||||
return output, olens
|
||||
return output.to(input.dtype), olens
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from funasr.modules.nets_utils import make_pad_mask
|
||||
|
||||
|
||||
class LabelSmoothingLoss(nn.Module):
|
||||
@ -61,3 +62,20 @@ class LabelSmoothingLoss(nn.Module):
|
||||
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
||||
denom = total if self.normalize_length else batch_size
|
||||
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
||||
|
||||
|
||||
class SequenceBinaryCrossEntropy(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
normalize_length=False,
|
||||
criterion=nn.BCEWithLogitsLoss(reduction="none")
|
||||
):
|
||||
super().__init__()
|
||||
self.normalize_length = normalize_length
|
||||
self.criterion = criterion
|
||||
|
||||
def forward(self, pred, label, lengths):
|
||||
pad_mask = make_pad_mask(lengths, maxlen=pred.shape[1])
|
||||
loss = self.criterion(pred, label)
|
||||
denom = (~pad_mask).sum() if self.normalize_length else pred.shape[0]
|
||||
return loss.masked_fill(pad_mask, 0).sum() / denom
|
||||
|
||||
@ -7,7 +7,7 @@ from distutils.version import LooseVersion
|
||||
from itertools import permutations
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Tuple, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -23,6 +23,8 @@ from funasr.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr.layers.abs_normalize import AbsNormalize
|
||||
from funasr.torch_utils.device_funcs import force_gatherable
|
||||
from funasr.train.abs_espnet_model import AbsESPnetModel
|
||||
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss, SequenceBinaryCrossEntropy
|
||||
from funasr.utils.misc import int2vec
|
||||
|
||||
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||||
from torch.cuda.amp import autocast
|
||||
@ -54,7 +56,10 @@ class DiarSondModel(AbsESPnetModel):
|
||||
length_normalized_loss: bool = False,
|
||||
max_spk_num: int = 16,
|
||||
label_aggregator: Optional[torch.nn.Module] = None,
|
||||
normlize_speech_speaker: bool = False,
|
||||
normalize_speech_speaker: bool = False,
|
||||
ignore_id: int = -1,
|
||||
speaker_discrimination_loss_weight: float = 1.0,
|
||||
inter_score_loss_weight: float = 0.0
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
@ -71,7 +76,25 @@ class DiarSondModel(AbsESPnetModel):
|
||||
self.decoder = decoder
|
||||
self.token_list = token_list
|
||||
self.max_spk_num = max_spk_num
|
||||
self.normalize_speech_speaker = normlize_speech_speaker
|
||||
self.normalize_speech_speaker = normalize_speech_speaker
|
||||
self.ignore_id = ignore_id
|
||||
self.criterion_diar = LabelSmoothingLoss(
|
||||
size=vocab_size,
|
||||
padding_idx=ignore_id,
|
||||
smoothing=lsm_weight,
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
self.criterion_bce = SequenceBinaryCrossEntropy(normalize_length=length_normalized_loss)
|
||||
self.pse_embedding = self.generate_pse_embedding()
|
||||
self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight
|
||||
self.inter_score_loss_weight = inter_score_loss_weight
|
||||
|
||||
def generate_pse_embedding(self):
|
||||
embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float)
|
||||
for idx, pse_label in enumerate(self.token_list):
|
||||
emb = int2vec(pse_label, vec_dim=self.max_spk_num, dtype=np.float)
|
||||
embedding[idx] = emb
|
||||
return torch.from_numpy(embedding)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -85,7 +108,7 @@ class DiarSondModel(AbsESPnetModel):
|
||||
"""Frontend + Encoder + Speaker Encoder + CI Scorer + CD Scorer + Decoder + Calc loss
|
||||
|
||||
Args:
|
||||
speech: (Batch, samples)
|
||||
speech: (Batch, samples) or (Batch, frames, input_size)
|
||||
speech_lengths: (Batch,) default None for chunk interator,
|
||||
because the chunk-iterator does not
|
||||
have the speech_lengths returned.
|
||||
@ -93,63 +116,42 @@ class DiarSondModel(AbsESPnetModel):
|
||||
espnet2/iterators/chunk_iter_factory.py
|
||||
profile: (Batch, N_spk, dim)
|
||||
profile_lengths: (Batch,)
|
||||
spk_labels: (Batch, )
|
||||
spk_labels: (Batch, frames, input_size)
|
||||
spk_labels_lengths: (Batch,)
|
||||
"""
|
||||
assert speech.shape[0] == spk_labels.shape[0], (speech.shape, spk_labels.shape)
|
||||
batch_size = speech.shape[0]
|
||||
|
||||
# 1. Encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
# 1. Network forward
|
||||
pred, inter_outputs = self.prediction_forward(
|
||||
speech, speech_lengths,
|
||||
profile, profile_lengths,
|
||||
return_inter_outputs=True
|
||||
)
|
||||
(speech, speech_lengths), (profile, profile_lengths), (ci_score, cd_score) = inter_outputs
|
||||
|
||||
if self.attractor is None:
|
||||
# 2a. Decoder (baiscally a predction layer after encoder_out)
|
||||
pred = self.decoder(encoder_out, encoder_out_lens)
|
||||
else:
|
||||
# 2b. Encoder Decoder Attractors
|
||||
# Shuffle the chronological order of encoder_out, then calculate attractor
|
||||
encoder_out_shuffled = encoder_out.clone()
|
||||
for i in range(len(encoder_out_lens)):
|
||||
encoder_out_shuffled[i, : encoder_out_lens[i], :] = encoder_out[
|
||||
i, torch.randperm(encoder_out_lens[i]), :
|
||||
]
|
||||
attractor, att_prob = self.attractor(
|
||||
encoder_out_shuffled,
|
||||
encoder_out_lens,
|
||||
to_device(
|
||||
self,
|
||||
torch.zeros(
|
||||
encoder_out.size(0), spk_labels.size(2) + 1, encoder_out.size(2)
|
||||
),
|
||||
),
|
||||
)
|
||||
# Remove the final attractor which does not correspond to a speaker
|
||||
# Then multiply the attractors and encoder_out
|
||||
pred = torch.bmm(encoder_out, attractor[:, :-1, :].permute(0, 2, 1))
|
||||
# 3. Aggregate time-domain labels
|
||||
# 2. Aggregate time-domain labels to match forward outputs
|
||||
if self.label_aggregator is not None:
|
||||
spk_labels, spk_labels_lengths = self.label_aggregator(
|
||||
spk_labels, spk_labels_lengths
|
||||
spk_labels.unsqueeze(2), spk_labels_lengths
|
||||
)
|
||||
spk_labels = spk_labels.squeeze(2)
|
||||
|
||||
# If encoder uses conv* as input_layer (i.e., subsampling),
|
||||
# the sequence length of 'pred' might be slighly less than the
|
||||
# the sequence length of 'pred' might be slightly less than the
|
||||
# length of 'spk_labels'. Here we force them to be equal.
|
||||
length_diff_tolerance = 2
|
||||
length_diff = spk_labels.shape[1] - pred.shape[1]
|
||||
if length_diff > 0 and length_diff <= length_diff_tolerance:
|
||||
spk_labels = spk_labels[:, 0 : pred.shape[1], :]
|
||||
if 0 < length_diff <= length_diff_tolerance:
|
||||
spk_labels = spk_labels[:, 0: pred.shape[1], :]
|
||||
|
||||
loss_diar = self.classification_loss(pred, spk_labels, spk_labels_lengths)
|
||||
loss_spk_dis = self.speaker_discrimination_loss(profile, profile_lengths)
|
||||
loss_inter_ci, loss_inter_cd = self.internal_score_loss(cd_score, ci_score, spk_labels, spk_labels_lengths)
|
||||
label_mask = make_pad_mask(spk_labels_lengths, maxlen=spk_labels.shape[1])
|
||||
loss = (loss_diar + self.speaker_discrimination_loss_weight * loss_spk_dis
|
||||
+ self.inter_score_loss_weight * (loss_inter_ci + loss_inter_cd))
|
||||
|
||||
if self.attractor is None:
|
||||
loss_pit, loss_att = None, None
|
||||
loss, perm_idx, perm_list, label_perm = self.pit_loss(
|
||||
pred, spk_labels, encoder_out_lens
|
||||
)
|
||||
else:
|
||||
loss_pit, perm_idx, perm_list, label_perm = self.pit_loss(
|
||||
pred, spk_labels, encoder_out_lens
|
||||
)
|
||||
loss_att = self.attractor_loss(att_prob, spk_labels)
|
||||
loss = loss_pit + self.attractor_weight * loss_att
|
||||
(
|
||||
correct,
|
||||
num_frames,
|
||||
@ -160,7 +162,11 @@ class DiarSondModel(AbsESPnetModel):
|
||||
speaker_miss,
|
||||
speaker_falarm,
|
||||
speaker_error,
|
||||
) = self.calc_diarization_error(pred, label_perm, encoder_out_lens)
|
||||
) = self.calc_diarization_error(
|
||||
pred=F.embedding(pred.argmax(dim=2) * label_mask, self.pse_embedding),
|
||||
label=F.embedding(spk_labels * label_mask, self.pse_embedding),
|
||||
length=spk_labels_lengths
|
||||
)
|
||||
|
||||
if speech_scored > 0 and num_frames > 0:
|
||||
sad_mr, sad_fr, mi, fa, cf, acc, der = (
|
||||
@ -177,8 +183,10 @@ class DiarSondModel(AbsESPnetModel):
|
||||
|
||||
stats = dict(
|
||||
loss=loss.detach(),
|
||||
loss_att=loss_att.detach() if loss_att is not None else None,
|
||||
loss_pit=loss_pit.detach() if loss_pit is not None else None,
|
||||
loss_diar=loss_diar.detach() if loss_diar is not None else None,
|
||||
loss_spk_dis=loss_spk_dis.detach() if loss_spk_dis is not None else None,
|
||||
loss_inter_ci=loss_inter_ci.detach() if loss_inter_ci is not None else None,
|
||||
loss_inter_cd=loss_inter_cd.detach() if loss_inter_cd is not None else None,
|
||||
sad_mr=sad_mr,
|
||||
sad_fr=sad_fr,
|
||||
mi=mi,
|
||||
@ -191,6 +199,61 @@ class DiarSondModel(AbsESPnetModel):
|
||||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def classification_loss(
|
||||
self,
|
||||
predictions: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
prediction_lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
pad_labels = labels.masked_fill(
|
||||
make_pad_mask(prediction_lengths, maxlen=labels.shape[1]),
|
||||
value=self.ignore_id
|
||||
)
|
||||
loss = self.criterion_diar(predictions, pad_labels)
|
||||
|
||||
return loss
|
||||
|
||||
def speaker_discrimination_loss(
|
||||
self,
|
||||
profile: torch.Tensor,
|
||||
profile_lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float() # (B, N, 1)
|
||||
mask = torch.matmul(profile_mask, profile_mask.transpose(1, 2)) # (B, N, N)
|
||||
mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0))
|
||||
|
||||
eps = 1e-12
|
||||
coding_norm = torch.linalg.norm(
|
||||
profile * profile_mask + (1 - profile_mask) * eps,
|
||||
dim=2, keepdim=True
|
||||
) * profile_mask
|
||||
cos_theta = F.cosine_similarity(profile, profile, dim=2, eps=eps) * mask
|
||||
cos_theta = torch.clip(cos_theta, -1 + eps, 1 - eps)
|
||||
loss = (F.relu(mask * coding_norm * (cos_theta - 0.0))).sum() / mask.sum()
|
||||
|
||||
return loss
|
||||
|
||||
def calculate_multi_labels(self, pse_labels, pse_labels_lengths):
|
||||
padding_labels = pse_labels.masked_fill(
|
||||
make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1]),
|
||||
value=0
|
||||
).to(pse_labels.dtype)
|
||||
multi_labels = F.embedding(padding_labels, self.pse_embedding)
|
||||
|
||||
return multi_labels
|
||||
|
||||
def internal_score_loss(
|
||||
self,
|
||||
cd_score: torch.Tensor,
|
||||
ci_score: torch.Tensor,
|
||||
pse_labels: torch.Tensor,
|
||||
pse_labels_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
multi_labels = self.calculate_multi_labels(pse_labels, pse_labels_lengths)
|
||||
ci_loss = self.criterion_bce(ci_score, multi_labels, pse_labels_lengths)
|
||||
cd_loss = self.criterion_bce(cd_score, multi_labels, pse_labels_lengths)
|
||||
return ci_loss, cd_loss
|
||||
|
||||
def collect_feats(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
@ -282,7 +345,8 @@ class DiarSondModel(AbsESPnetModel):
|
||||
speech_lengths: torch.Tensor,
|
||||
profile: torch.Tensor,
|
||||
profile_lengths: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
return_inter_outputs: bool = False,
|
||||
) -> [torch.Tensor, Optional[list]]:
|
||||
# speech encoding
|
||||
speech, speech_lengths = self.encode_speech(speech, speech_lengths)
|
||||
# speaker encoding
|
||||
@ -292,6 +356,8 @@ class DiarSondModel(AbsESPnetModel):
|
||||
# post net forward
|
||||
logits = self.post_net_forward(similarity, speech_lengths)
|
||||
|
||||
if return_inter_outputs:
|
||||
return logits, [(speech, speech_lengths), (profile, profile_lengths), torch.split(similarity, 2)]
|
||||
return logits
|
||||
|
||||
def encode(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user