mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Merge branch 'dev_xw' of github.com:alibaba-damo-academy/FunASR into dev_xw
add
This commit is contained in:
commit
5b355e0f93
@ -23,6 +23,8 @@ class Paraformer():
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
plot_timestamp_to: str = "",
|
||||
pred_bias: int = 1,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
@ -41,14 +43,15 @@ class Paraformer():
|
||||
)
|
||||
self.ort_infer = OrtInferSession(model_file, device_id)
|
||||
self.batch_size = batch_size
|
||||
self.plot = True
|
||||
self.plot_timestamp_to = plot_timestamp_to
|
||||
self.pred_bias = pred_bias
|
||||
|
||||
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
asr_res = []
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
res = {}
|
||||
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
||||
try:
|
||||
@ -64,19 +67,41 @@ class Paraformer():
|
||||
logging.warning("input wav is silence or noise")
|
||||
preds = ['']
|
||||
else:
|
||||
preds, raw_token = self.decode(am_scores, valid_token_lens)[0]
|
||||
res['preds'] = preds
|
||||
if us_cif_peak is not None:
|
||||
timestamp, timestamp_total = time_stamp_lfr6_onnx(us_cif_peak, copy.copy(raw_token))
|
||||
res['timestamp'] = timestamp
|
||||
if self.plot:
|
||||
self.plot_wave_timestamp(waveform_list[0], timestamp_total)
|
||||
asr_res.append(res)
|
||||
preds = self.decode(am_scores, valid_token_lens)
|
||||
if us_cif_peak is None:
|
||||
for pred in preds:
|
||||
asr_res.append({'preds': pred})
|
||||
else:
|
||||
for pred, us_cif_peak_ in zip(preds, us_cif_peak):
|
||||
text, tokens = pred
|
||||
timestamp, timestamp_total = time_stamp_lfr6_onnx(us_cif_peak_, copy.copy(tokens))
|
||||
if len(self.plot_timestamp_to):
|
||||
self.plot_wave_timestamp(waveform_list[0], timestamp_total, self.plot_timestamp_to)
|
||||
asr_res.append({'preds': text, 'timestamp': timestamp})
|
||||
return asr_res
|
||||
|
||||
def plot_wave_timestamp(self, wav, text_timestamp):
|
||||
def plot_wave_timestamp(self, wav, text_timestamp, dest):
|
||||
# TODO: Plot the wav and timestamp results with matplotlib
|
||||
import pdb; pdb.set_trace()
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
|
||||
ax2 = ax1.twinx()
|
||||
ax2.set_ylim([0, 2.0])
|
||||
# plot waveform
|
||||
ax1.set_ylim([-0.3, 0.3])
|
||||
time = np.arange(wav.shape[0]) / 16000
|
||||
ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4)
|
||||
# plot lines and text
|
||||
for (char, start, end) in text_timestamp:
|
||||
ax1.vlines(start, -0.3, 0.3, ls='--')
|
||||
ax1.vlines(end, -0.3, 0.3, ls='--')
|
||||
x_adj = 0.045 if char != '<sil>' else 0.12
|
||||
ax1.text((start + end) * 0.5 - x_adj, 0, char)
|
||||
# plt.legend()
|
||||
plotname = "{}/timestamp.png".format(dest)
|
||||
plt.savefig(plotname, bbox_inches='tight')
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
@ -150,9 +175,7 @@ class Paraformer():
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
# token = token[:valid_token_num-1]
|
||||
token = token[:valid_token_num-self.pred_bias]
|
||||
texts = sentence_postprocess(token)
|
||||
text = texts[0]
|
||||
# text = self.tokenizer.tokens2text(token)
|
||||
return text, token
|
||||
return texts
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user