vad + asr

This commit is contained in:
游雁 2023-12-21 21:08:46 +08:00
parent a1b0cd33d5
commit 5a8f379084
10 changed files with 411 additions and 64 deletions

View File

@ -0,0 +1,31 @@
cmd="funasr/bin/inference.py"
python $cmd \
+model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
+vad_model="/Users/zhifu/Downloads/modelscope_models/speech_fsmn_vad_zh-cn-16k-common-pytorch" \
+input="/Users/zhifu/funasr_github/test_local/vad_example.wav" \
+output_dir="/Users/zhifu/Downloads/ckpt/funasr2/exp2" \
+device="cpu" \
+batch_size_s=300 \
+batch_size_threshold_s=60 \
+debug="true"
#python $cmd \
#+model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404" \
#+input="/Users/zhifu/Downloads/asr_example.wav" \
#+output_dir="/Users/zhifu/Downloads/ckpt/funasr2/exp2" \
#+device="cpu" \
#+"hotword='达魔院 魔搭'"
#+input="/Users/zhifu/funasr_github/test_local/wav.scp"
#+input="/Users/zhifu/funasr_github/test_local/asr_example.wav" \
#+input="/Users/zhifu/funasr_github/test_local/aishell2_dev_ios/asr_task_debug_len.jsonl" \
#+input="/Users/zhifu/funasr_github/test_local/aishell2_dev_ios/asr_task_debug_len_10.jsonl" \
#+model="/Users/zhifu/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
#+model="/Users/zhifu/modelscope_models/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
#+model="/Users/zhifu/modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404" \
#+"hotword='达魔院 魔搭'"
#+vad_model="/Users/zhifu/Downloads/modelscope_models/speech_fsmn_vad_zh-cn-16k-common-pytorch" \

View File

@ -16,7 +16,8 @@ import time
import random
import string
from funasr.register import tables
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio
from funasr.utils.vad_utils import slice_padding_audio_samples
def build_iter_for_infer(data_in, input_len=None, data_type="sound"):
"""
@ -73,15 +74,44 @@ def main_hydra(kwargs: DictConfig):
logging.basicConfig(level=log_level)
import pdb;
pdb.set_trace()
if kwargs.get("debug", False):
import pdb; pdb.set_trace()
model = AutoModel(**kwargs)
res = model.generate(input=kwargs["input"])
res = model(input=kwargs["input"])
print(res)
class AutoModel:
def __init__(self, **kwargs):
tables.print()
model, kwargs = self.build_model(**kwargs)
# if vad_model is not None, build vad model else None
vad_model = kwargs.get("vad_model", None)
vad_kwargs = kwargs.get("vad_model_revision", None)
if vad_model is not None:
print("build vad model")
vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs}
vad_model, vad_kwargs = self.build_model(**vad_kwargs)
# if punc_model is not None, build punc model else None
punc_model = kwargs.get("punc_model", None)
punc_kwargs = kwargs.get("punc_model_revision", None)
if punc_model is not None:
punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs}
punc_model, punc_kwargs = self.build_model(**punc_kwargs)
self.kwargs = kwargs
self.model = model
self.vad_model = vad_model
self.vad_kwargs = vad_kwargs
self.punc_model = punc_model
self.punc_kwargs = punc_kwargs
def build_model(self, **kwargs):
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
@ -94,7 +124,7 @@ class AutoModel:
device = "cpu"
kwargs["batch_size"] = 1
kwargs["device"] = device
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
@ -113,7 +143,8 @@ class AutoModel:
# build model
model_class = tables.model_classes.get(kwargs["model"].lower())
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list) if tokenizer is not None else -1)
model = model_class(**kwargs, **kwargs["model_conf"],
vocab_size=len(tokenizer.token_list) if tokenizer is not None else -1)
model.eval()
model.to(device)
@ -127,23 +158,34 @@ class AutoModel:
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False),
oss_bucket=kwargs.get("oss_bucket", None),
)
self.kwargs = kwargs
self.model = model
self.tokenizer = tokenizer
return model, kwargs
def generate(self, input, input_len=None, **cfg):
self.kwargs.update(cfg)
data_type = self.kwargs.get("data_type", "sound")
batch_size = self.kwargs.get("batch_size", 1)
if self.kwargs.get("device", "cpu") == "cpu":
batch_size = 1
def __call__(self, input, input_len=None, **cfg):
if self.vad_model is None:
return self.generate(input, input_len=input_len, **cfg)
else:
return self.generate_with_vad(input, input_len=input_len, **cfg)
def generate(self, input, input_len=None, model=None, kwargs=None, **cfg):
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
model = self.model if model is None else model
data_type = kwargs.get("data_type", "sound")
batch_size = kwargs.get("batch_size", 1)
# if kwargs.get("device", "cpu") == "cpu":
# batch_size = 1
key_list, data_list = build_iter_for_infer(input, input_len=input_len, data_type=data_type)
speed_stats = {}
asr_result_list = []
num_samples = len(data_list)
pbar = tqdm(colour="blue", total=num_samples, dynamic_ncols=True)
pbar = tqdm(colour="blue", total=num_samples+1, dynamic_ncols=True)
time_speech_total = 0.0
time_escape_total = 0.0
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
@ -154,25 +196,139 @@ class AutoModel:
batch["data_lengths"] = input_len
time1 = time.perf_counter()
results, meta_data = self.model.generate(**batch, **self.kwargs)
results, meta_data = model.generate(**batch, **kwargs)
time2 = time.perf_counter()
asr_result_list.append(results)
asr_result_list.extend(results)
pbar.update(1)
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
batch_data_time = meta_data.get("batch_data_time", -1)
time_escape = time2 - time1
speed_stats["load_data"] = meta_data.get("load_data", 0.0)
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
speed_stats["forward"] = f"{time2 - time1:0.3f}"
speed_stats["rtf"] = f"{(time2 - time1) / batch_data_time:0.3f}"
speed_stats["forward"] = f"{time_escape:0.3f}"
speed_stats["batch_size"] = f"{len(results)}"
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}"
description = (
f"{speed_stats}, "
)
pbar.set_description(description)
time_speech_total += batch_data_time
time_escape_total += time_escape
pbar.update(1)
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}")
torch.cuda.empty_cache()
return asr_result_list
def generate_with_vad(self, input, input_len=None, **cfg):
# step.1: compute the vad model
model = self.vad_model
kwargs = self.vad_kwargs
beg_vad = time.time()
res = self.generate(input, input_len=input_len, model=model, kwargs=kwargs, **cfg)
end_vad = time.time()
print(f"time cost vad: {end_vad - beg_vad:0.3f}")
# step.2 compute asr model
model = self.model
kwargs = self.kwargs
kwargs.update(cfg)
batch_size = int(kwargs.get("batch_size_s", 300))*1000
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000
kwargs["batch_size"] = batch_size
data_type = kwargs.get("data_type", "sound")
key_list, data_list = build_iter_for_infer(input, input_len=input_len, data_type=data_type)
results_ret_list = []
time_speech_total_all_samples = 0.0
beg_total = time.time()
pbar_total = tqdm(colour="red", total=len(res) + 1, dynamic_ncols=True)
for i in range(len(res)):
key = res[i]["key"]
vadsegments = res[i]["value"]
input_i = data_list[i]
speech = load_audio(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000))
speech_lengths = len(speech)
n = len(vadsegments)
data_with_index = [(vadsegments[i], i) for i in range(n)]
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
results_sorted = []
if not len(sorted_data):
logging.info("decoding, utt: {}, empty speech".format(key))
continue
# if kwargs["device"] == "cpu":
# batch_size = 0
if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0])
batch_size_ms_cum = 0
beg_idx = 0
beg_asr_total = time.time()
time_speech_total_per_sample = speech_lengths/16000
time_speech_total_all_samples += time_speech_total_per_sample
for j, _ in enumerate(range(0, n)):
batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0])
if j < n - 1 and (
batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and (
sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms:
continue
batch_size_ms_cum = 0
end_idx = j + 1
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
beg_idx = end_idx
results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg)
if len(results) < 1:
continue
results_sorted.extend(results)
pbar_total.update(1)
end_asr_total = time.time()
time_escape_total_per_sample = end_asr_total - beg_asr_total
pbar_total.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, "
f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}")
restored_data = [0] * n
for j in range(n):
index = sorted_data[j][1]
restored_data[index] = results_sorted[j]
result = {}
for j in range(n):
for k, v in restored_data[j].items():
if not k.startswith("timestamp"):
if k not in result:
result[k] = restored_data[j][k]
else:
result[k] += restored_data[j][k]
else:
result[k] = []
for t in restored_data[j][k]:
t[0] += vadsegments[j][0]
t[1] += vadsegments[j][0]
result[k] += restored_data[j][k]
result["key"] = key
results_ret_list.append(result)
pbar_total.update(1)
pbar_total.update(1)
end_total = time.time()
time_escape_total_all_samples = end_total - beg_total
pbar_total.set_description(f"rtf_avg_all_samples: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, "
f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, "
f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}")
return results_ret_list
if __name__ == '__main__':
main_hydra()

View File

@ -25,7 +25,9 @@ from funasr.register import tables
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
import pdb; pdb.set_trace()
if kwargs.get("debug", False):
import pdb; pdb.set_trace()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))

View File

@ -24,11 +24,10 @@ def download_fr_ms(**kwargs):
kwargs["init_param"] = init_param
if os.path.exists(os.path.join(model_or_path, "tokens.txt")):
kwargs["tokenizer_conf"]["token_list"] = os.path.join(model_or_path, "tokens.txt")
if os.path.exists(os.path.join(model_or_path, "tokens.txt")):
if os.path.exists(os.path.join(model_or_path, "seg_dict")):
kwargs["tokenizer_conf"]["seg_dict"] = os.path.join(model_or_path, "seg_dict")
if os.path.exists(os.path.join(model_or_path, "bpe.model")):
kwargs["tokenizer_conf"]["bpemodel"] = os.path.join(model_or_path, "bpe.model")
kwargs["model"] = cfg["model"]
kwargs["frontend_conf"]["cmvn_file"] = os.path.join(model_or_path, "am.mvn")

View File

@ -29,6 +29,7 @@ from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
from funasr.utils.timestamp_tools import time_stamp_sentence
from funasr.models.paraformer.model import Paraformer
@ -211,10 +212,11 @@ class BiCifParaformer(Paraformer):
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def generate(self,
data_in: list,
data_lengths: list = None,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
@ -230,17 +232,23 @@ class BiCifParaformer(Paraformer):
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=self.frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data[
"batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
if isinstance(data_in, torch.Tensor): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is None:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"])
@ -261,9 +269,8 @@ class BiCifParaformer(Paraformer):
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
# BiCifParaformer, test no bias cif2
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens,
pre_token_length)
pre_token_length)
results = []
b, n, d = decoder_out.size()
@ -302,27 +309,32 @@ class BiCifParaformer(Paraformer):
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
us_peaks[i][:encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0))
text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(token, timestamp)
result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed,
"time_stamp_postprocessed": time_stamp_postprocessed,
"word_lists": word_lists
}
results.append(result_i)
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
us_peaks[i][:encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0))
text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(
token, timestamp)
sentences = time_stamp_sentence(None, time_stamp_postprocessed, text_postprocessed)
result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed,
"timestamp": time_stamp_postprocessed,
"word_lists": word_lists,
"sentences": sentences
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data
return results, meta_data

View File

@ -0,0 +1,134 @@
# This is an example that demonstrates how to configure a model file.
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.register import tables
# tables.print()
# network architecture
#model: funasr.models.paraformer.model:Paraformer
model: BiCifParaformer
model_conf:
ctc_weight: 0.0
lsm_weight: 0.1
length_normalized_loss: true
predictor_weight: 1.0
predictor_bias: 1
sampling_ratio: 0.75
# encoder
encoder: SANMEncoder
encoder_conf:
output_size: 512
attention_heads: 4
linear_units: 2048
num_blocks: 50
dropout_rate: 0.1
positional_dropout_rate: 0.1
attention_dropout_rate: 0.1
input_layer: pe
pos_enc_class: SinusoidalPositionEncoder
normalize_before: true
kernel_size: 11
sanm_shfit: 0
selfattention_layer_type: sanm
# decoder
decoder: ParaformerSANMDecoder
decoder_conf:
attention_heads: 4
linear_units: 2048
num_blocks: 16
dropout_rate: 0.1
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.1
src_attention_dropout_rate: 0.1
att_layer_num: 16
kernel_size: 11
sanm_shfit: 0
predictor: CifPredictorV3
predictor_conf:
idim: 512
threshold: 1.0
l_order: 1
r_order: 1
tail_threshold: 0.45
smooth_factor2: 0.25
noise_threshold2: 0.01
upsample_times: 3
use_cif1_cnn: false
upsample_type: cnn_blstm
# frontend related
frontend: WavFrontend
frontend_conf:
fs: 16000
window: hamming
n_mels: 80
frame_length: 25
frame_shift: 10
lfr_m: 7
lfr_n: 6
specaug: SpecAugLFR
specaug_conf:
apply_time_warp: false
time_warp_window: 5
time_warp_mode: bicubic
apply_freq_mask: true
freq_mask_width_range:
- 0
- 30
lfr_rate: 6
num_freq_mask: 1
apply_time_mask: true
time_mask_width_range:
- 0
- 12
num_time_mask: 1
train_conf:
accum_grad: 1
grad_clip: 5
max_epoch: 150
val_scheduler_criterion:
- valid
- acc
best_model_criterion:
- - valid
- acc
- max
keep_nbest_models: 10
log_interval: 50
optim: adam
optim_conf:
lr: 0.0005
scheduler: warmuplr
scheduler_conf:
warmup_steps: 30000
dataset: AudioDataset
dataset_conf:
index_ds: IndexDSJsonl
batch_sampler: DynamicBatchLocalShuffleSampler
batch_type: example # example or length
batch_size: 1 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len;
max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length,
buffer_size: 500
shuffle: True
num_workers: 0
tokenizer: CharTokenizer
tokenizer_conf:
unk_symbol: <unk>
split_with_space: true
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: true
normalize: null

View File

@ -857,7 +857,7 @@ class BiCifParaformer(Paraformer):
return results, meta_data
class ParaformerOnline(Paraformer):
class ParaformerStreaming(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition

View File

@ -15,4 +15,17 @@ def slice_padding_fbank(speech, speech_lengths, vad_segments):
feats_pad = pad_sequence(speech_list, batch_first=True, padding_value=0.0)
speech_lengths_pad = torch.Tensor(speech_lengths_list).int()
return feats_pad, speech_lengths_pad
def slice_padding_audio_samples(speech, speech_lengths, vad_segments):
speech_list = []
speech_lengths_list = []
for i, segment in enumerate(vad_segments):
bed_idx = int(segment[0][0] * 16)
end_idx = min(int(segment[0][1] * 16), speech_lengths)
speech_i = speech[bed_idx: end_idx]
speech_lengths_i = end_idx - bed_idx
speech_list.append(speech_i)
speech_lengths_list.append(speech_lengths_i)
return speech_list, speech_lengths_list