mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Merge pull request #83 from alibaba-damo-academy/dev_lzr
remove useless vars and fix bug in predictor tail_process_fn
This commit is contained in:
commit
579b998ded
@ -464,16 +464,6 @@ def inference_modelscope(
|
||||
|
||||
return _forward
|
||||
|
||||
def set_parameters(language: str = None,
|
||||
sample_rate: Union[int, Dict[Any, int]] = None):
|
||||
if language is not None:
|
||||
global global_asr_language
|
||||
global_asr_language = language
|
||||
if sample_rate is not None:
|
||||
global global_sample_rate
|
||||
global_sample_rate = sample_rate
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="ASR Decoding",
|
||||
|
||||
@ -68,7 +68,8 @@ class CifPredictor(nn.Module):
|
||||
mask_2 = torch.cat([ones_t, mask], dim=1)
|
||||
mask = mask_2 - mask_1
|
||||
tail_threshold = mask * tail_threshold
|
||||
alphas = torch.cat([alphas, tail_threshold], dim=1)
|
||||
alphas = torch.cat([alphas, zeros_t], dim=1)
|
||||
alphas = torch.add(alphas, tail_threshold)
|
||||
else:
|
||||
tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(alphas.device)
|
||||
tail_threshold = torch.reshape(tail_threshold, (1, 1))
|
||||
@ -597,7 +598,8 @@ class CifPredictorV3(nn.Module):
|
||||
mask_2 = torch.cat([ones_t, mask], dim=1)
|
||||
mask = mask_2 - mask_1
|
||||
tail_threshold = mask * tail_threshold
|
||||
alphas = torch.cat([alphas, tail_threshold], dim=1)
|
||||
alphas = torch.cat([alphas, zeros_t], dim=1)
|
||||
alphas = torch.add(alphas, tail_threshold)
|
||||
else:
|
||||
tail_threshold = torch.tensor([tail_threshold], dtype=alphas.dtype).to(alphas.device)
|
||||
tail_threshold = torch.reshape(tail_threshold, (1, 1))
|
||||
|
||||
@ -186,23 +186,12 @@ def recursion_dir_all_wav(wav_list, dir_path: str) -> List[str]:
|
||||
|
||||
return wav_list
|
||||
|
||||
|
||||
def set_parameters(language: str = None):
|
||||
if language is not None:
|
||||
global global_asr_language
|
||||
global_asr_language = language
|
||||
|
||||
|
||||
def compute_wer(hyp_list: List[Any],
|
||||
ref_list: List[Any],
|
||||
lang: str = None) -> Dict[str, Any]:
|
||||
assert len(hyp_list) > 0, 'hyp list is empty'
|
||||
assert len(ref_list) > 0, 'ref list is empty'
|
||||
|
||||
if lang is not None:
|
||||
global global_asr_language
|
||||
global_asr_language = lang
|
||||
|
||||
rst = {
|
||||
'Wrd': 0,
|
||||
'Corr': 0,
|
||||
@ -216,12 +205,15 @@ def compute_wer(hyp_list: List[Any],
|
||||
'wrong_sentences': 0
|
||||
}
|
||||
|
||||
if lang is None:
|
||||
lang = global_asr_language
|
||||
|
||||
for h_item in hyp_list:
|
||||
for r_item in ref_list:
|
||||
if h_item['key'] == r_item['key']:
|
||||
out_item = compute_wer_by_line(h_item['value'],
|
||||
r_item['value'],
|
||||
global_asr_language)
|
||||
lang)
|
||||
rst['Wrd'] += out_item['nwords']
|
||||
rst['Corr'] += out_item['cor']
|
||||
rst['wrong_words'] += out_item['wrong']
|
||||
|
||||
Loading…
Reference in New Issue
Block a user