mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Dev gzf deepspeed (#1745)
* resume from step * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * batch * train_loss_avg train_acc_avg * train_loss_avg train_acc_avg * train_loss_avg train_acc_avg * log step * wav is not exist * wav is not exist * decoding * decoding * decoding * wechat * decoding key * decoding key * decoding key * decoding key * decoding key * decoding key * dynamic batch * start_data_split_i=0 * total_time/accum_grad * total_time/accum_grad * total_time/accum_grad * update avg slice * update avg slice * sensevoice sanm * sensevoice sanm * add * add * add * add * deepspeed * update with main (#1731) * c++ runtime adapt to 1.0 (#1724) * adapt vad runtime to 1.0 * add json * change yml name * add func LoadVocabFromJson * add token file for InitAsr * add token path for OfflineStream * add funcOpenYaml * add token file for InitPunc * add token file for stream * update punc-model * update funasr-wss-server * update runtime_sdk_download_tool.py * update docker list * Delete docs/images/wechat.png * Add files via upload * Emo2Vec限定选择的情感类别 (#1730) * 限定选择的情感类别 * 使用none来禁用情感标签输出 * 修改输出接口 * 使用unuse来禁用token --------- Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com> * bugfix * v1.0.27 * update docs * hf hub * Fix incorrect assignment of 'end' attribute to 'start' in sentences list comprehension (#1680) --------- Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com> Co-authored-by: gaochangfeng <54253717+gaochangfeng@users.noreply.github.com> Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com> Co-authored-by: nsdou <168500039+nsdou@users.noreply.github.com> * docs * docs * deepspeed * deepspeed * deepspeed * deepspeed * update * ds * ds * ds * ds * ds * ds * ds * add * add * bugfix * add --------- Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com> Co-authored-by: gaochangfeng <54253717+gaochangfeng@users.noreply.github.com> Co-authored-by: 常材 <gaochangfeng.gcf@alibaba-inc.com> Co-authored-by: nsdou <168500039+nsdou@users.noreply.github.com>
This commit is contained in:
parent
963ba1a771
commit
5715decf44
16
examples/wenetspeech/transformer/README.md
Normal file
16
examples/wenetspeech/transformer/README.md
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
|
||||||
|
# Conformer Result
|
||||||
|
|
||||||
|
## Training Config
|
||||||
|
- Feature info: using 80 dims fbank, global cmvn, speed perturb(0.9, 1.0, 1.1), specaugment
|
||||||
|
- Train info: lr 5e-4, batch_size 25000, 2 gpu(Tesla V100), acc_grad 1, 50 epochs
|
||||||
|
- Train config: conf/train_asr_transformer.yaml
|
||||||
|
- LM config: LM was not used
|
||||||
|
- Model size: 46M
|
||||||
|
|
||||||
|
## Results (CER)
|
||||||
|
|
||||||
|
| testset | CER(%) |
|
||||||
|
|:-----------:|:------:|
|
||||||
|
| dev | 4.97 |
|
||||||
|
| test | 5.37 |
|
||||||
@ -0,0 +1,104 @@
|
|||||||
|
# This is an example that demonstrates how to configure a model file.
|
||||||
|
# You can modify the configuration according to your own requirements.
|
||||||
|
|
||||||
|
# to print the register_table:
|
||||||
|
# from funasr.register import tables
|
||||||
|
# tables.print()
|
||||||
|
|
||||||
|
# network architecture
|
||||||
|
model: Transformer
|
||||||
|
model_conf:
|
||||||
|
ctc_weight: 0.3
|
||||||
|
lsm_weight: 0.1 # label smoothing option
|
||||||
|
length_normalized_loss: false
|
||||||
|
|
||||||
|
# encoder
|
||||||
|
encoder: TransformerEncoder
|
||||||
|
encoder_conf:
|
||||||
|
output_size: 256 # dimension of attention
|
||||||
|
attention_heads: 4
|
||||||
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
|
num_blocks: 12 # the number of encoder blocks
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.0
|
||||||
|
input_layer: conv2d # encoder architecture type
|
||||||
|
normalize_before: true
|
||||||
|
|
||||||
|
# decoder
|
||||||
|
decoder: TransformerDecoder
|
||||||
|
decoder_conf:
|
||||||
|
attention_heads: 4
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
self_attention_dropout_rate: 0.0
|
||||||
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
|
|
||||||
|
# frontend related
|
||||||
|
frontend: WavFrontend
|
||||||
|
frontend_conf:
|
||||||
|
fs: 16000
|
||||||
|
window: hamming
|
||||||
|
n_mels: 80
|
||||||
|
frame_length: 25
|
||||||
|
frame_shift: 10
|
||||||
|
lfr_m: 1
|
||||||
|
lfr_n: 1
|
||||||
|
|
||||||
|
specaug: SpecAug
|
||||||
|
specaug_conf:
|
||||||
|
apply_time_warp: true
|
||||||
|
time_warp_window: 5
|
||||||
|
time_warp_mode: bicubic
|
||||||
|
apply_freq_mask: true
|
||||||
|
freq_mask_width_range:
|
||||||
|
- 0
|
||||||
|
- 30
|
||||||
|
num_freq_mask: 2
|
||||||
|
apply_time_mask: true
|
||||||
|
time_mask_width_range:
|
||||||
|
- 0
|
||||||
|
- 40
|
||||||
|
num_time_mask: 2
|
||||||
|
|
||||||
|
train_conf:
|
||||||
|
accum_grad: 1
|
||||||
|
grad_clip: 5
|
||||||
|
max_epoch: 150
|
||||||
|
keep_nbest_models: 10
|
||||||
|
log_interval: 50
|
||||||
|
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.002
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 30000
|
||||||
|
|
||||||
|
dataset: AudioDataset
|
||||||
|
dataset_conf:
|
||||||
|
index_ds: IndexDSJsonl
|
||||||
|
batch_sampler: EspnetStyleBatchSampler
|
||||||
|
batch_type: length # example or length
|
||||||
|
batch_size: 25000 # if batch_type is example, batch_size is the numbers of samples; if length, batch_size is source_token_len+target_token_len;
|
||||||
|
max_token_length: 2048 # filter samples if source_token_len+target_token_len > max_token_length,
|
||||||
|
buffer_size: 1024
|
||||||
|
shuffle: True
|
||||||
|
num_workers: 4
|
||||||
|
preprocessor_speech: SpeechPreprocessSpeedPerturb
|
||||||
|
preprocessor_speech_conf:
|
||||||
|
speed_perturb: [0.9, 1.0, 1.1]
|
||||||
|
|
||||||
|
tokenizer: CharTokenizer
|
||||||
|
tokenizer_conf:
|
||||||
|
unk_symbol: <unk>
|
||||||
|
|
||||||
|
ctc_conf:
|
||||||
|
dropout_rate: 0.0
|
||||||
|
ctc_type: builtin
|
||||||
|
reduce: true
|
||||||
|
ignore_nan_grad: true
|
||||||
|
normalize: null
|
||||||
1
examples/wenetspeech/transformer/demo_infer.sh
Symbolic link
1
examples/wenetspeech/transformer/demo_infer.sh
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../paraformer/demo_infer.sh
|
||||||
1
examples/wenetspeech/transformer/demo_train_or_finetune.sh
Symbolic link
1
examples/wenetspeech/transformer/demo_train_or_finetune.sh
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../paraformer/demo_train_or_finetune.sh
|
||||||
66
examples/wenetspeech/transformer/local/aishell_data_prep.sh
Executable file
66
examples/wenetspeech/transformer/local/aishell_data_prep.sh
Executable file
@ -0,0 +1,66 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# Copyright 2017 Xingyu Na
|
||||||
|
# Apache 2.0
|
||||||
|
|
||||||
|
#. ./path.sh || exit 1;
|
||||||
|
|
||||||
|
if [ $# != 3 ]; then
|
||||||
|
echo "Usage: $0 <audio-path> <text-path> <output-path>"
|
||||||
|
echo " $0 /export/a05/xna/data/data_aishell/wav /export/a05/xna/data/data_aishell/transcript data"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
aishell_audio_dir=$1
|
||||||
|
aishell_text=$2/aishell_transcript_v0.8.txt
|
||||||
|
output_dir=$3
|
||||||
|
|
||||||
|
train_dir=$output_dir/data/local/train
|
||||||
|
dev_dir=$output_dir/data/local/dev
|
||||||
|
test_dir=$output_dir/data/local/test
|
||||||
|
tmp_dir=$output_dir/data/local/tmp
|
||||||
|
|
||||||
|
mkdir -p $train_dir
|
||||||
|
mkdir -p $dev_dir
|
||||||
|
mkdir -p $test_dir
|
||||||
|
mkdir -p $tmp_dir
|
||||||
|
|
||||||
|
# data directory check
|
||||||
|
if [ ! -d $aishell_audio_dir ] || [ ! -f $aishell_text ]; then
|
||||||
|
echo "Error: $0 requires two directory arguments"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
# find wav audio file for train, dev and test resp.
|
||||||
|
find $aishell_audio_dir -iname "*.wav" > $tmp_dir/wav.flist
|
||||||
|
n=`cat $tmp_dir/wav.flist | wc -l`
|
||||||
|
[ $n -ne 141925 ] && \
|
||||||
|
echo Warning: expected 141925 data data files, found $n
|
||||||
|
|
||||||
|
grep -i "wav/train" $tmp_dir/wav.flist > $train_dir/wav.flist || exit 1;
|
||||||
|
grep -i "wav/dev" $tmp_dir/wav.flist > $dev_dir/wav.flist || exit 1;
|
||||||
|
grep -i "wav/test" $tmp_dir/wav.flist > $test_dir/wav.flist || exit 1;
|
||||||
|
|
||||||
|
rm -r $tmp_dir
|
||||||
|
|
||||||
|
# Transcriptions preparation
|
||||||
|
for dir in $train_dir $dev_dir $test_dir; do
|
||||||
|
echo Preparing $dir transcriptions
|
||||||
|
sed -e 's/\.wav//' $dir/wav.flist | awk -F '/' '{print $NF}' > $dir/utt.list
|
||||||
|
paste -d' ' $dir/utt.list $dir/wav.flist > $dir/wav.scp_all
|
||||||
|
utils/filter_scp.pl -f 1 $dir/utt.list $aishell_text > $dir/transcripts.txt
|
||||||
|
awk '{print $1}' $dir/transcripts.txt > $dir/utt.list
|
||||||
|
utils/filter_scp.pl -f 1 $dir/utt.list $dir/wav.scp_all | sort -u > $dir/wav.scp
|
||||||
|
sort -u $dir/transcripts.txt > $dir/text
|
||||||
|
done
|
||||||
|
|
||||||
|
mkdir -p $output_dir/data/train $output_dir/data/dev $output_dir/data/test
|
||||||
|
|
||||||
|
for f in wav.scp text; do
|
||||||
|
cp $train_dir/$f $output_dir/data/train/$f || exit 1;
|
||||||
|
cp $dev_dir/$f $output_dir/data/dev/$f || exit 1;
|
||||||
|
cp $test_dir/$f $output_dir/data/test/$f || exit 1;
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "$0: AISHELL data preparation succeeded"
|
||||||
|
exit 0;
|
||||||
105
examples/wenetspeech/transformer/local/download_and_untar.sh
Executable file
105
examples/wenetspeech/transformer/local/download_and_untar.sh
Executable file
@ -0,0 +1,105 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# Copyright 2014 Johns Hopkins University (author: Daniel Povey)
|
||||||
|
# 2017 Xingyu Na
|
||||||
|
# Apache 2.0
|
||||||
|
|
||||||
|
remove_archive=false
|
||||||
|
|
||||||
|
if [ "$1" == --remove-archive ]; then
|
||||||
|
remove_archive=true
|
||||||
|
shift
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $# -ne 3 ]; then
|
||||||
|
echo "Usage: $0 [--remove-archive] <data-base> <url-base> <corpus-part>"
|
||||||
|
echo "e.g.: $0 /export/a05/xna/data www.openslr.org/resources/33 data_aishell"
|
||||||
|
echo "With --remove-archive it will remove the archive after successfully un-tarring it."
|
||||||
|
echo "<corpus-part> can be one of: data_aishell, resource_aishell."
|
||||||
|
fi
|
||||||
|
|
||||||
|
data=$1
|
||||||
|
url=$2
|
||||||
|
part=$3
|
||||||
|
|
||||||
|
if [ ! -d "$data" ]; then
|
||||||
|
echo "$0: no such directory $data"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
part_ok=false
|
||||||
|
list="data_aishell resource_aishell"
|
||||||
|
for x in $list; do
|
||||||
|
if [ "$part" == $x ]; then part_ok=true; fi
|
||||||
|
done
|
||||||
|
if ! $part_ok; then
|
||||||
|
echo "$0: expected <corpus-part> to be one of $list, but got '$part'"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -z "$url" ]; then
|
||||||
|
echo "$0: empty URL base."
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ -f $data/$part/.complete ]; then
|
||||||
|
echo "$0: data part $part was already successfully extracted, nothing to do."
|
||||||
|
exit 0;
|
||||||
|
fi
|
||||||
|
|
||||||
|
# sizes of the archive files in bytes.
|
||||||
|
sizes="15582913665 1246920"
|
||||||
|
|
||||||
|
if [ -f $data/$part.tgz ]; then
|
||||||
|
size=$(/bin/ls -l $data/$part.tgz | awk '{print $5}')
|
||||||
|
size_ok=false
|
||||||
|
for s in $sizes; do if [ $s == $size ]; then size_ok=true; fi; done
|
||||||
|
if ! $size_ok; then
|
||||||
|
echo "$0: removing existing file $data/$part.tgz because its size in bytes $size"
|
||||||
|
echo "does not equal the size of one of the archives."
|
||||||
|
rm $data/$part.tgz
|
||||||
|
else
|
||||||
|
echo "$data/$part.tgz exists and appears to be complete."
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $data/$part.tgz ]; then
|
||||||
|
if ! command -v wget >/dev/null; then
|
||||||
|
echo "$0: wget is not installed."
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
full_url=$url/$part.tgz
|
||||||
|
echo "$0: downloading data from $full_url. This may take some time, please be patient."
|
||||||
|
|
||||||
|
cd $data || exit 1
|
||||||
|
if ! wget --no-check-certificate $full_url; then
|
||||||
|
echo "$0: error executing wget $full_url"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
cd $data || exit 1
|
||||||
|
|
||||||
|
if ! tar -xvzf $part.tgz; then
|
||||||
|
echo "$0: error un-tarring archive $data/$part.tgz"
|
||||||
|
exit 1;
|
||||||
|
fi
|
||||||
|
|
||||||
|
touch $data/$part/.complete
|
||||||
|
|
||||||
|
if [ $part == "data_aishell" ]; then
|
||||||
|
cd $data/$part/wav || exit 1
|
||||||
|
for wav in ./*.tar.gz; do
|
||||||
|
echo "Extracting wav from $wav"
|
||||||
|
tar -zxf $wav && rm $wav
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "$0: Successfully downloaded and un-tarred $data/$part.tgz"
|
||||||
|
|
||||||
|
if $remove_archive; then
|
||||||
|
echo "$0: removing $data/$part.tgz file since --remove-archive option was supplied."
|
||||||
|
rm $data/$part.tgz
|
||||||
|
fi
|
||||||
|
|
||||||
|
exit 0;
|
||||||
203
examples/wenetspeech/transformer/run.sh
Executable file
203
examples/wenetspeech/transformer/run.sh
Executable file
@ -0,0 +1,203 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
|
||||||
|
CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
|
||||||
|
# general configuration
|
||||||
|
feats_dir="../DATA" #feature output dictionary
|
||||||
|
exp_dir=`pwd`
|
||||||
|
lang=zh
|
||||||
|
token_type=char
|
||||||
|
stage=0
|
||||||
|
stop_stage=5
|
||||||
|
|
||||||
|
# feature configuration
|
||||||
|
nj=32
|
||||||
|
|
||||||
|
inference_device="cuda" #"cpu"
|
||||||
|
inference_checkpoint="model.pt.avg10"
|
||||||
|
inference_scp="wav.scp"
|
||||||
|
inference_batch_size=1
|
||||||
|
|
||||||
|
# data
|
||||||
|
raw_data=../raw_data
|
||||||
|
data_url=www.openslr.org/resources/33
|
||||||
|
|
||||||
|
# exp tag
|
||||||
|
tag="exp1"
|
||||||
|
workspace=`pwd`
|
||||||
|
|
||||||
|
master_port=12345
|
||||||
|
|
||||||
|
. utils/parse_options.sh || exit 1;
|
||||||
|
|
||||||
|
# Set bash to 'debug' mode, it will exit on :
|
||||||
|
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
||||||
|
set -e
|
||||||
|
set -u
|
||||||
|
set -o pipefail
|
||||||
|
|
||||||
|
train_set=train
|
||||||
|
valid_set=dev
|
||||||
|
test_sets="dev test"
|
||||||
|
|
||||||
|
config=transformer_12e_6d_2048_256.yaml
|
||||||
|
model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||||
|
echo "stage -1: Data Download"
|
||||||
|
mkdir -p ${raw_data}
|
||||||
|
local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
|
||||||
|
local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
||||||
|
echo "stage 0: Data preparation"
|
||||||
|
# Data preparation
|
||||||
|
local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
|
||||||
|
for x in train dev test; do
|
||||||
|
cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
|
||||||
|
paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
|
||||||
|
> ${feats_dir}/data/${x}/text
|
||||||
|
utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
|
||||||
|
mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
|
||||||
|
|
||||||
|
# convert wav.scp text to jsonl
|
||||||
|
scp_file_list_arg="++scp_file_list='[\"${feats_dir}/data/${x}/wav.scp\",\"${feats_dir}/data/${x}/text\"]'"
|
||||||
|
python ../../../funasr/datasets/audio_datasets/scp2jsonl.py \
|
||||||
|
++data_type_list='["source", "target"]' \
|
||||||
|
++jsonl_file_out=${feats_dir}/data/${x}/audio_datasets.jsonl \
|
||||||
|
${scp_file_list_arg}
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||||
|
echo "stage 1: Feature and CMVN Generation"
|
||||||
|
python ../../../funasr/bin/compute_audio_cmvn.py \
|
||||||
|
--config-path "${workspace}/conf" \
|
||||||
|
--config-name "${config}" \
|
||||||
|
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
|
||||||
|
++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
|
||||||
|
|
||||||
|
fi
|
||||||
|
|
||||||
|
token_list=${feats_dir}/data/${lang}_token_list/$token_type/tokens.txt
|
||||||
|
echo "dictionary: ${token_list}"
|
||||||
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||||
|
echo "stage 2: Dictionary Preparation"
|
||||||
|
mkdir -p ${feats_dir}/data/${lang}_token_list/$token_type/
|
||||||
|
|
||||||
|
echo "make a dictionary"
|
||||||
|
echo "<blank>" > ${token_list}
|
||||||
|
echo "<s>" >> ${token_list}
|
||||||
|
echo "</s>" >> ${token_list}
|
||||||
|
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
|
||||||
|
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
|
||||||
|
echo "<unk>" >> ${token_list}
|
||||||
|
fi
|
||||||
|
|
||||||
|
# LM Training Stage
|
||||||
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||||
|
echo "stage 3: LM Training"
|
||||||
|
fi
|
||||||
|
|
||||||
|
# ASR Training Stage
|
||||||
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||||
|
echo "stage 4: ASR Training"
|
||||||
|
|
||||||
|
mkdir -p ${exp_dir}/exp/${model_dir}
|
||||||
|
current_time=$(date "+%Y-%m-%d_%H-%M")
|
||||||
|
log_file="${exp_dir}/exp/${model_dir}/train.log.txt.${current_time}"
|
||||||
|
echo "log_file: ${log_file}"
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES
|
||||||
|
gpu_num=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||||
|
torchrun \
|
||||||
|
--nnodes 1 \
|
||||||
|
--nproc_per_node ${gpu_num} \
|
||||||
|
--master_port ${master_port} \
|
||||||
|
../../../funasr/bin/train.py \
|
||||||
|
--config-path "${workspace}/conf" \
|
||||||
|
--config-name "${config}" \
|
||||||
|
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
|
||||||
|
++valid_data_set_list="${feats_dir}/data/${valid_set}/audio_datasets.jsonl" \
|
||||||
|
++tokenizer_conf.token_list="${token_list}" \
|
||||||
|
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
||||||
|
++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file}
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Testing Stage
|
||||||
|
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||||
|
echo "stage 5: Inference"
|
||||||
|
|
||||||
|
if [ ${inference_device} == "cuda" ]; then
|
||||||
|
nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||||
|
else
|
||||||
|
inference_batch_size=1
|
||||||
|
CUDA_VISIBLE_DEVICES=""
|
||||||
|
for JOB in $(seq ${nj}); do
|
||||||
|
CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1,"
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
for dset in ${test_sets}; do
|
||||||
|
|
||||||
|
inference_dir="${exp_dir}/exp/${model_dir}/inference-${inference_checkpoint}/${dset}"
|
||||||
|
_logdir="${inference_dir}/logdir"
|
||||||
|
echo "inference_dir: ${inference_dir}"
|
||||||
|
|
||||||
|
mkdir -p "${_logdir}"
|
||||||
|
data_dir="${feats_dir}/data/${dset}"
|
||||||
|
key_file=${data_dir}/${inference_scp}
|
||||||
|
|
||||||
|
split_scps=
|
||||||
|
for JOB in $(seq "${nj}"); do
|
||||||
|
split_scps+=" ${_logdir}/keys.${JOB}.scp"
|
||||||
|
done
|
||||||
|
utils/split_scp.pl "${key_file}" ${split_scps}
|
||||||
|
|
||||||
|
gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ })
|
||||||
|
for JOB in $(seq ${nj}); do
|
||||||
|
{
|
||||||
|
id=$((JOB-1))
|
||||||
|
gpuid=${gpuid_list_array[$id]}
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES=${gpuid}
|
||||||
|
python ../../../funasr/bin/inference.py \
|
||||||
|
--config-path="${exp_dir}/exp/${model_dir}" \
|
||||||
|
--config-name="config.yaml" \
|
||||||
|
++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \
|
||||||
|
++tokenizer_conf.token_list="${token_list}" \
|
||||||
|
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
||||||
|
++input="${_logdir}/keys.${JOB}.scp" \
|
||||||
|
++output_dir="${inference_dir}/${JOB}" \
|
||||||
|
++device="${inference_device}" \
|
||||||
|
++ncpu=1 \
|
||||||
|
++disable_log=true \
|
||||||
|
++batch_size="${inference_batch_size}" &> ${_logdir}/log.${JOB}.txt
|
||||||
|
}&
|
||||||
|
|
||||||
|
done
|
||||||
|
wait
|
||||||
|
|
||||||
|
mkdir -p ${inference_dir}/1best_recog
|
||||||
|
for f in token score text; do
|
||||||
|
if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
|
||||||
|
for JOB in $(seq "${nj}"); do
|
||||||
|
cat "${inference_dir}/${JOB}/1best_recog/${f}"
|
||||||
|
done | sort -k1 >"${inference_dir}/1best_recog/${f}"
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
echo "Computing WER ..."
|
||||||
|
python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
|
||||||
|
python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref
|
||||||
|
python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
|
||||||
|
tail -n 3 ${inference_dir}/1best_recog/text.cer
|
||||||
|
done
|
||||||
|
|
||||||
|
fi
|
||||||
1
examples/wenetspeech/transformer/utils
Symbolic link
1
examples/wenetspeech/transformer/utils
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../paraformer/utils
|
||||||
Loading…
Reference in New Issue
Block a user