This commit is contained in:
speech_asr 2023-04-21 01:29:44 +08:00
parent 10bce3e632
commit 52eb056c76
2 changed files with 299 additions and 0 deletions

View File

@ -0,0 +1,296 @@
import logging
import torch
from funasr.layers.global_mvn import GlobalMVN
from funasr.layers.label_aggregation import LabelAggregate
from funasr.layers.utterance_mvn import UtteranceMVN
from funasr.models.e2e_diar_eend_ola import DiarEENDOLAModel
from funasr.models.e2e_diar_sond import DiarSondModel
from funasr.models.encoder.conformer_encoder import ConformerEncoder
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
from funasr.models.encoder.ecapa_tdnn_encoder import ECAPA_TDNN
from funasr.models.encoder.opennmt_encoders.ci_scorers import DotScorer, CosScorer
from funasr.models.encoder.opennmt_encoders.conv_encoder import ConvEncoder
from funasr.models.encoder.opennmt_encoders.fsmn_encoder import FsmnEncoder
from funasr.models.encoder.opennmt_encoders.self_attention_encoder import SelfAttentionEncoder
from funasr.models.encoder.resnet34_encoder import ResNet34Diar, ResNet34SpL2RegDiar
from funasr.models.encoder.rnn_encoder import RNNEncoder
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
from funasr.models.encoder.transformer_encoder import TransformerEncoder
from funasr.models.frontend.default import DefaultFrontend
from funasr.models.frontend.fused import FusedFrontends
from funasr.models.frontend.s3prl import S3prlFrontend
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.models.frontend.wav_frontend import WavFrontendMel23
from funasr.models.frontend.windowing import SlidingWindow
from funasr.models.specaug.specaug import SpecAug
from funasr.models.specaug.specaug import SpecAugLFR
from funasr.modules.eend_ola.encoder import EENDOLATransformerEncoder
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
from funasr.torch_utils.initialize import initialize
from funasr.train.class_choices import ClassChoices
frontend_choices = ClassChoices(
name="frontend",
classes=dict(
default=DefaultFrontend,
sliding_window=SlidingWindow,
s3prl=S3prlFrontend,
fused=FusedFrontends,
wav_frontend=WavFrontend,
wav_frontend_mel23=WavFrontendMel23,
),
default="default",
)
specaug_choices = ClassChoices(
name="specaug",
classes=dict(
specaug=SpecAug,
specaug_lfr=SpecAugLFR,
),
default=None,
optional=True,
)
normalize_choices = ClassChoices(
"normalize",
classes=dict(
global_mvn=GlobalMVN,
utterance_mvn=UtteranceMVN,
),
default=None,
optional=True,
)
label_aggregator_choices = ClassChoices(
"label_aggregator",
classes=dict(
label_aggregator=LabelAggregate
),
default=None,
optional=True,
)
model_choices = ClassChoices(
"model",
classes=dict(
sond=DiarSondModel,
eend_ola=DiarEENDOLAModel,
),
default="sond",
)
encoder_choices = ClassChoices(
"encoder",
classes=dict(
conformer=ConformerEncoder,
transformer=TransformerEncoder,
rnn=RNNEncoder,
sanm=SANMEncoder,
san=SelfAttentionEncoder,
fsmn=FsmnEncoder,
conv=ConvEncoder,
resnet34=ResNet34Diar,
resnet34_sp_l2reg=ResNet34SpL2RegDiar,
sanm_chunk_opt=SANMEncoderChunkOpt,
data2vec_encoder=Data2VecEncoder,
ecapa_tdnn=ECAPA_TDNN,
eend_ola_transformer=EENDOLATransformerEncoder,
),
default="resnet34",
)
speaker_encoder_choices = ClassChoices(
"speaker_encoder",
classes=dict(
conformer=ConformerEncoder,
transformer=TransformerEncoder,
rnn=RNNEncoder,
sanm=SANMEncoder,
san=SelfAttentionEncoder,
fsmn=FsmnEncoder,
conv=ConvEncoder,
sanm_chunk_opt=SANMEncoderChunkOpt,
data2vec_encoder=Data2VecEncoder,
),
default=None,
optional=True
)
cd_scorer_choices = ClassChoices(
"cd_scorer",
classes=dict(
san=SelfAttentionEncoder,
),
default=None,
optional=True,
)
ci_scorer_choices = ClassChoices(
"ci_scorer",
classes=dict(
dot=DotScorer,
cosine=CosScorer,
conv=ConvEncoder,
),
type_check=torch.nn.Module,
default=None,
optional=True,
)
# decoder is used for output (e.g. post_net in SOND)
decoder_choices = ClassChoices(
"decoder",
classes=dict(
rnn=RNNEncoder,
fsmn=FsmnEncoder,
),
type_check=torch.nn.Module,
default="fsmn",
)
# encoder_decoder_attractor is used for EEND-OLA
encoder_decoder_attractor_choices = ClassChoices(
"encoder_decoder_attractor",
classes=dict(
eda=EncoderDecoderAttractor,
),
type_check=torch.nn.Module,
default="eda",
)
class_choices_list = [
# --frontend and --frontend_conf
frontend_choices,
# --specaug and --specaug_conf
specaug_choices,
# --normalize and --normalize_conf
normalize_choices,
# --label_aggregator and --label_aggregator_conf
label_aggregator_choices,
# --model and --model_conf
model_choices,
# --encoder and --encoder_conf
encoder_choices,
# --speaker_encoder and --speaker_encoder_conf
speaker_encoder_choices,
# --cd_scorer and cd_scorer_conf
cd_scorer_choices,
# --ci_scorer and ci_scorer_conf
ci_scorer_choices,
# --decoder and --decoder_conf
decoder_choices,
# --eda and --eda_conf
encoder_decoder_attractor_choices,
]
def build_diar_model(args):
# token_list
if args.token_list is not None:
with open(args.token_list) as f:
token_list = [line.rstrip() for line in f]
args.token_list = list(token_list)
vocab_size = len(token_list)
logging.info(f"Vocabulary size: {vocab_size}")
else:
vocab_size = None
# frontend
if args.input_size is None:
frontend_class = frontend_choices.get_class(args.frontend)
if args.frontend == 'wav_frontend':
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
else:
frontend = frontend_class(**args.frontend_conf)
input_size = frontend.output_size()
else:
args.frontend = None
args.frontend_conf = {}
frontend = None
input_size = args.input_size
# encoder
encoder_class = encoder_choices.get_class(args.encoder)
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
if args.model_name == "sond":
# data augmentation for spectrogram
if args.specaug is not None:
specaug_class = specaug_choices.get_class(args.specaug)
specaug = specaug_class(**args.specaug_conf)
else:
specaug = None
# normalization layer
if args.normalize is not None:
normalize_class = normalize_choices.get_class(args.normalize)
normalize = normalize_class(**args.normalize_conf)
else:
normalize = None
# speaker encoder
if getattr(args, "speaker_encoder", None) is not None:
speaker_encoder_class = speaker_encoder_choices.get_class(args.speaker_encoder)
speaker_encoder = speaker_encoder_class(**args.speaker_encoder_conf)
else:
speaker_encoder = None
# ci scorer
if getattr(args, "ci_scorer", None) is not None:
ci_scorer_class = ci_scorer_choices.get_class(args.ci_scorer)
ci_scorer = ci_scorer_class(**args.ci_scorer_conf)
else:
ci_scorer = None
# cd scorer
if getattr(args, "cd_scorer", None) is not None:
cd_scorer_class = cd_scorer_choices.get_class(args.cd_scorer)
cd_scorer = cd_scorer_class(**args.cd_scorer_conf)
else:
cd_scorer = None
# decoder
decoder_class = decoder_choices.get_class(args.decoder)
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder.output_size(),
**args.decoder_conf,
)
# logger aggregator
if getattr(args, "label_aggregator", None) is not None:
label_aggregator_class = label_aggregator_choices.get_class(args.label_aggregator)
label_aggregator = label_aggregator_class(**args.label_aggregator_conf)
else:
label_aggregator = None
model_class = model_choices.get_class(args.model)
model = model_class(
vocab_size=vocab_size,
frontend=frontend,
specaug=specaug,
normalize=normalize,
label_aggregator=label_aggregator,
encoder=encoder,
speaker_encoder=speaker_encoder,
ci_scorer=ci_scorer,
cd_scorer=cd_scorer,
decoder=decoder,
token_list=token_list,
**args.model_conf,
)
elif args.model_name == "eend_ola":
# encoder-decoder attractor
encoder_decoder_attractor_class = encoder_decoder_attractor_choices.get_class(args.encoder_decoder_attractor)
encoder_decoder_attractor = encoder_decoder_attractor_class(**args.encoder_decoder_attractor_conf)
# 9. Build model
model_class = model_choices.get_class(args.model)
model = model_class(
frontend=frontend,
encoder=encoder,
encoder_decoder_attractor=encoder_decoder_attractor,
**args.model_conf,
)
else:
raise NotImplementedError("Not supported model: {}".format(args.model))
# 10. Initialize
if args.init is not None:
initialize(model, args.init)
return model

View File

@ -3,6 +3,7 @@ from funasr.build_utils.build_lm_model import build_lm_model
from funasr.build_utils.build_pretrain_model import build_pretrain_model
from funasr.build_utils.build_punc_model import build_punc_model
from funasr.build_utils.build_vad_model import build_vad_model
from funasr.build_utils.build_diar_model import build_diar_model
def build_model(args):
@ -16,6 +17,8 @@ def build_model(args):
model = build_punc_model(args)
elif args.task_name == "vad":
model = build_vad_model(args)
elif args.task_name == "diar":
model = build_diar_model(args)
else:
raise NotImplementedError("Not supported task: {}".format(args.task_name))