TOLD/SOND: fixbug extract null segments

This commit is contained in:
志浩 2023-08-01 20:19:58 +08:00
parent 9f7496696a
commit 4fdcba65bb
3 changed files with 349 additions and 2 deletions

View File

@ -0,0 +1,347 @@
#!/usr/bin/env bash
. ./path.sh || exit 1;
# This recipe aims at reimplement the results of SOND on Callhome corpus which is represented in
# [1] TOLD: A Novel Two-stage Overlap-aware Framework for Speaker Diarization, ICASSP 2023
# You can also use it on other dataset such AliMeeting to reproduce the results in
# [2] Speaker Overlap-aware Neural Diarization for Multi-party Meeting Analysis, EMNLP 2022
# We recommend you run this script stage by stage.
# environment configuration
if [ ! -e utils ]; then
ln -s ../../../aishell/transformer/utils ./utils
fi
# machines configuration
gpu_devices="0,1,2,3"
gpu_num=4
count=1
# general configuration
stage=1
stop_stage=1
# number of jobs for data process
nj=16
sr=8000
# dataset related
data_root=
# experiment configuration
lang=en
feats_type=fbank
datadir=data
dumpdir=dump
expdir=exp
train_cmd=utils/run.pl
# training related
tag=""
train_set=callhome1
valid_set=callhome1
train_config=conf/EAND_ResNet34_SAN_L4N512_None_FFN_FSMN_L6N512_bce_dia_loss_01_phase3.yaml
token_list=${datadir}/token_list/powerset_label_n16k4.txt
init_param=
freeze_param=
# inference related
inference_model=valid.der.ave_5best.pth
inference_config=conf/basic_inference.yaml
inference_tag=""
test_sets="callhome2"
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
# number of jobs for inference
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
njob=4
infer_cmd=utils/run.pl
told_max_iter=4
. utils/parse_options.sh || exit 1;
model_dir="$(basename "${train_config}" .yaml)_${feats_type}_${lang}${tag}"
# you can set gpu num for decoding here
gpuid_list=$gpu_devices # set gpus for decoding, the same as training stage by default
ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
if ${gpu_inference}; then
inference_nj=$[${ngpu}*${njob}]
_ngpu=1
else
inference_nj=$njob
_ngpu=0
fi
# Download required resources
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "Stage 0: Download required resources."
wget told_finetune_resources.zip
fi
# Finetune model on callhome1
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "Stage 1: Finetune pretrained model on callhome1."
world_size=$gpu_num # run on one machine
mkdir -p ${expdir}/${model_dir}
mkdir -p ${expdir}/${model_dir}/log
mkdir -p /tmp/${model_dir}
INIT_FILE=/tmp/${model_dir}/ddp_init
if [ -f $INIT_FILE ];then
rm -f $INIT_FILE
fi
init_opt=""
if [ ! -z "${init_param}" ]; then
init_opt="--init_param ${init_param}"
echo ${init_opt}
fi
freeze_opt=""
if [ ! -z "${freeze_param}" ]; then
freeze_opt="--freeze_param ${freeze_param}"
echo ${freeze_opt}
fi
init_method=file://$(readlink -f $INIT_FILE)
echo "$0: init method is $init_method"
for ((i = 0; i < $gpu_num; ++i)); do
{
rank=$i
local_rank=$i
gpu_id=$(echo $gpu_devices | cut -d',' -f$[$i+1])
diar_train.py \
--gpu_id $gpu_id \
--use_preprocessor false \
--token_type char \
--token_list $token_list \
--train_data_path_and_name_and_type ${datadir}/${valid_set}/dumped_files/feats.scp,speech,kaldi_ark \
--train_data_path_and_name_and_type ${datadir}/${valid_set}/dumped_files/profile.scp,profile,kaldi_ark \
--train_data_path_and_name_and_type ${datadir}/${valid_set}/dumped_files/label.scp,binary_labels,kaldi_ark \
--train_shape_file ${expdir}/${valid_set}_states/speech_shape \
--valid_data_path_and_name_and_type ${datadir}/${valid_set}/dumped_files/feats.scp,speech,kaldi_ark \
--valid_data_path_and_name_and_type ${datadir}/${valid_set}/dumped_files/profile.scp,profile,kaldi_ark \
--valid_data_path_and_name_and_type ${datadir}/${valid_set}/dumped_files/label.scp,binary_labels,kaldi_ark \
--valid_shape_file ${expdir}/${valid_set}_states/speech_shape \
--init_param exp/pretrained_models/phase2.pth \
--unused_parameters true \
${init_opt} \
${freeze_opt} \
--ignore_init_mismatch true \
--resume true \
--output_dir ${expdir}/${model_dir} \
--config ${train_config} \
--ngpu $gpu_num \
--num_worker_count $count \
--multiprocessing_distributed true \
--dist_init_method $init_method \
--dist_world_size $world_size \
--dist_rank $rank \
--local_rank $local_rank 1> ${expdir}/${model_dir}/log/train.log.$i 2>&1
} &
done
echo "Training log can be found at ${expdir}/${model_dir}/log/train.log.*"
wait
fi
# evaluate for finetuned model
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: evaluation for finetuned model ${inference_model}."
for dset in ${test_sets}; do
echo "Processing for $dset"
exp_model_dir=${expdir}/${model_dir}
_inference_tag="$(basename "${inference_config}" .yaml)${inference_tag}"
_dir="${exp_model_dir}/${_inference_tag}/${inference_model}/${dset}"
_logdir="${_dir}/logdir"
if [ -d ${_dir} ]; then
echo "WARNING: ${_dir} is already exists."
fi
mkdir -p "${_logdir}"
_data="${datadir}/${dset}/dumped_files"
key_file=${_data}/feats.scp
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
_opt=
if [ ! -z "${inference_config}" ]; then
_opt="--config ${inference_config}"
fi
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
echo "Inference log can be found at ${_logdir}/inference.*.log"
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/inference.JOB.log \
python -m funasr.bin.diar_inference_launch \
--batch_size 1 \
--ngpu "${_ngpu}" \
--njob ${njob} \
--gpuid_list ${gpuid_list} \
--data_path_and_name_and_type "${_data}/feats.scp,speech,kaldi_ark" \
--data_path_and_name_and_type "${_data}/profile.scp,profile,kaldi_ark" \
--key_file "${_logdir}"/keys.JOB.scp \
--diar_train_config "${exp_model_dir}"/config.yaml \
--diar_model_file "${exp_model_dir}"/${inference_model} \
--output_dir "${_logdir}"/output.JOB \
--mode sond ${_opt}
done
fi
# Scoring for finetuned model, you may get a DER like
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: Scoring finetuned models"
if [ ! -e dscore ]; then
git clone https://github.com/nryant/dscore.git
# add intervaltree to setup.py
fi
for dset in ${test_sets}; do
echo "stage 3: Scoring for ${dset}"
diar_exp=${expdir}/${model_dir}
_data="${datadir}/${dset}"
_inference_tag="$(basename "${inference_config}" .yaml)${inference_tag}"
_dir="${diar_exp}/${_inference_tag}/${inference_model}/${dset}"
_logdir="${_dir}/logdir"
cat ${_logdir}/*/labels.txt | sort > ${_dir}/labels.txt
cmd="python -Wignore script/convert_label_to_rttm.py ${_dir}/labels.txt ${datadir}/${dset}/files_for_dump/org_vad.txt ${_dir}/sys.rttm \
--ignore_len 10 --no_pbar --smooth_size 83 --vote_prob 0.5 --n_spk 16"
echo ${cmd}
eval ${cmd}
ref=${datadir}/${dset}/files_for_dump/ref.rttm
sys=${_dir}/sys.rttm.ref_vad
OVAD_DER=$(python -Wignore dscore/score.py -r $ref -s $sys --collar 0.25 2>&1 | grep OVERALL | awk '{print $4}')
ref=${datadir}/${dset}/files_for_dump/ref.rttm
sys=${_dir}/sys.rttm.sys_vad
SysVAD_DER=$(python -Wignore dscore/score.py -r $ref -s $sys --collar 0.25 2>&1 | grep OVERALL | awk '{print $4}')
echo -e "${inference_model} ${OVAD_DER} ${SysVAD_DER}" | tee -a ${_dir}/results.txt
done
fi
# You will get a DER like:
# iter0: 9.68 10.51
# iter1:
# iter2:
# iter3:
# iter4:
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
for dset in ${test_sets}; do
echo "stage 4: Evaluating finetuned system on ${dset} set with medfilter_size=83 clustering=EEND-OLA"
sv_exp_dir=${expdir}/speech_xvector_sv-en-us-callhome-8k-spk6135-pytorch
diar_exp=${expdir}/${model_dir}_phase3
_data="${datadir}/${dset}/dumped_files"
_inference_tag="$(basename "${inference_config}" .yaml)${inference_tag}"
_dir="${diar_exp}/${_inference_tag}/${inference_model}/${dset}"
for iter in `seq 0 ${told_max_iter}`; do
eval_dir=${_dir}/iter_${iter}
if [ $iter -eq 0 ]; then
prev_rttm=${expdir}/EEND-OLA/sys.rttm
else
prev_rttm=${_dir}/iter_$((${iter}-1))/sys.rttm.sys_vad
fi
echo "Use ${prev_rttm} as system outputs."
echo "Iteration ${iter}, step 1: extracting non-overlap segments"
cmd="python -Wignore script/extract_nonoverlap_segments.py ${datadir}/${dset}/wav.scp \
$prev_rttm ${eval_dir}/nonoverlap_segs/ --min_dur 0.1 --max_spk_num 16 --no_pbar --sr 8000"
# echo ${cmd}
eval ${cmd}
echo "Iteration ${iter}, step 2: make data directory"
mkdir -p ${eval_dir}/data
find `pwd`/${eval_dir}/nonoverlap_segs/ -iname "*.wav" | sort > ${eval_dir}/data/wav.flist
awk -F'[/.]' '{print $(NF-1),$0}' ${eval_dir}/data/wav.flist > ${eval_dir}/data/wav.scp
awk -F'[/.]' '{print $(NF-1),$(NF-2)}' ${eval_dir}/data/wav.flist > ${eval_dir}/data/utt2spk
cp $prev_rttm ${eval_dir}/data/sys.rttm
home_path=`pwd`
echo "Iteration ${iter}, step 3: calc x-vector for each utt"
key_file=${eval_dir}/data/wav.scp
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
_logdir=${eval_dir}/data/xvecs
mkdir -p ${_logdir}
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/sv_inference.JOB.log \
python -m funasr.bin.sv_inference_launch \
--njob ${njob} \
--batch_size 1 \
--ngpu "${_ngpu}" \
--gpuid_list ${gpuid_list} \
--data_path_and_name_and_type "${key_file},speech,sound" \
--key_file "${_logdir}"/keys.JOB.scp \
--sv_train_config ${sv_exp_dir}/sv.yaml \
--sv_model_file ${sv_exp_dir}/sv.pth \
--output_dir "${_logdir}"/output.JOB
cat ${_logdir}/output.*/xvector.scp | sort > ${eval_dir}/data/utt2xvec
echo "Iteration ${iter}, step 4: dump x-vector record"
awk '{print $1}' ${_data}/feats.scp > ${eval_dir}/data/idx
python script/dump_speaker_profiles.py --dir ${eval_dir}/data \
--out ${eval_dir}/global_n16 --n_spk 16 --no_pbar --emb_type global
spk_profile=${eval_dir}/global_n16_parts00_xvec.scp
echo "Iteration ${iter}, step 5: perform NN diarization"
_logdir=${eval_dir}/diar
mkdir -p ${_logdir}
key_file=${_data}/feats.scp
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
_opt=
if [ ! -z "${inference_config}" ]; then
_opt="--config ${inference_config}"
fi
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
echo "Inference log can be found at ${_logdir}/inference.*.log"
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/inference.JOB.log \
python -m funasr.bin.diar_inference_launch \
--batch_size 1 \
--ngpu "${_ngpu}" \
--njob ${njob} \
--gpuid_list ${gpuid_list} \
--data_path_and_name_and_type "${_data}/feats.scp,speech,kaldi_ark" \
--data_path_and_name_and_type "${spk_profile},profile,kaldi_ark" \
--key_file "${_logdir}"/keys.JOB.scp \
--diar_train_config ${diar_exp}/config.yaml \
--diar_model_file ${diar_exp}/${inference_model} \
--output_dir "${_logdir}"/output.JOB \
--mode sond ${_opt}
echo "Iteration ${iter}, step 6: calc diarization results"
cat ${_logdir}/output.*/labels.txt | sort > ${eval_dir}/labels.txt
cmd="python -Wignore script/convert_label_to_rttm.py ${eval_dir}/labels.txt ${datadir}/${dset}/files_for_dump/org_vad.txt ${eval_dir}/sys.rttm \
--ignore_len 10 --no_pbar --smooth_size 83 --vote_prob 0.5 --n_spk 16"
# echo ${cmd}
eval ${cmd}
ref=${datadir}/${dset}/files_for_dump/ref.rttm
sys=${eval_dir}/sys.rttm.ref_vad
OVAD_DER=$(python -Wignore dscore/score.py -r $ref -s $sys --collar 0.25 2>&1 | grep OVERALL | awk '{print $4}')
ref=${datadir}/${dset}/files_for_dump/ref.rttm
sys=${eval_dir}/sys.rttm.sys_vad
SysVAD_DER=$(python -Wignore dscore/score.py -r $ref -s $sys --collar 0.25 2>&1 | grep OVERALL | awk '{print $4}')
echo -e "${inference_model}/iter_${iter} ${OVAD_DER} ${SysVAD_DER}" | tee -a ${eval_dir}/results.txt
done
echo "Done."
done
fi

View File

@ -876,7 +876,7 @@ if [ ${stage} -le 19 ] && [ ${stop_stage} -ge 19 ]; then
--batch_size 1 \
--ngpu "${_ngpu}" \
--gpuid_list ${gpuid_list} \
--data_path_and_name_and_type "${key_file},speech,kaldi_ark" \
--data_path_and_name_and_type "${key_file},speech,sound" \
--key_file "${_logdir}"/keys.JOB.scp \
--sv_train_config ${sv_exp_dir}/sv.yaml \
--sv_model_file ${sv_exp_dir}/sv.pth \

View File

@ -93,7 +93,7 @@ def process(task_args):
extracted_spk = []
count = 1
for st, ed, spk in tqdm(turns, total=len(turns), ascii=True, disable=args.no_pbar):
if (ed - st) >= args.min_dur * args.sr:
if (ed - st) >= args.min_dur * args.sr and wav[st: ed] >= args.min_dur * args.sr:
seg = wav[st: ed]
save_path = os.path.join(args.out_dir, mid, spk, "{}_U{:04d}.wav".format(spk, count))
if not os.path.exists(os.path.dirname(save_path)):