mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
aishell example
This commit is contained in:
parent
6a9c21a408
commit
4ebde3c4ac
@ -39,23 +39,14 @@ train_set=train
|
||||
valid_set=dev
|
||||
test_sets="dev test"
|
||||
|
||||
asr_config=train_asr_paraformer_conformer_12e_6d_2048_256.yaml
|
||||
model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
|
||||
config=train_asr_paraformer_conformer_12e_6d_2048_256.yaml
|
||||
model_dir="baseline_$(basename "${config}" .yaml)_${lang}_${token_type}_${tag}"
|
||||
|
||||
inference_device="cuda" #"cpu"
|
||||
inference_checkpoint="model.pt"
|
||||
inference_scp="wav.scp"
|
||||
|
||||
#inference_config=conf/decode_asr_transformer_noctc_1best.yaml
|
||||
#inference_asr_model=valid.acc.ave_10best.pb
|
||||
|
||||
## you can set gpu num for decoding here
|
||||
#gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
|
||||
#ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
|
||||
#
|
||||
#if ${gpu_inference}; then
|
||||
# inference_nj=$[${ngpu}*${njob}]
|
||||
# _ngpu=1
|
||||
#else
|
||||
# inference_nj=$njob
|
||||
# _ngpu=0
|
||||
#fi
|
||||
|
||||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
|
||||
echo "stage -1: Data Download"
|
||||
@ -85,10 +76,10 @@ fi
|
||||
|
||||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||
echo "stage 1: Feature and CMVN Generation"
|
||||
# utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
|
||||
# utils/compute_cmvn.sh --fbankdir ${feats_dir}/data/${train_set} --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --config_file "$config" --scale 1.0
|
||||
python ../../../funasr/bin/compute_audio_cmvn.py \
|
||||
--config-path "${workspace}" \
|
||||
--config-name "${asr_config}" \
|
||||
--config-name "${config}" \
|
||||
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
|
||||
++cmvn_file="${feats_dir}/data/${train_set}/cmvn.json" \
|
||||
++dataset_conf.num_workers=$nj
|
||||
@ -116,90 +107,84 @@ fi
|
||||
|
||||
# ASR Training Stage
|
||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||
echo "stage 4: ASR Training"
|
||||
echo "stage 4: ASR Training"
|
||||
|
||||
log_file="${exp_dir}/exp/${model_dir}/train.log.txt"
|
||||
echo "log_file: ${log_file}"
|
||||
torchrun \
|
||||
--nnodes 1 \
|
||||
--nproc_per_node ${gpu_num} \
|
||||
../../../funasr/bin/train.py \
|
||||
--config-path "${workspace}" \
|
||||
--config-name "${asr_config}" \
|
||||
--config-name "${config}" \
|
||||
++train_data_set_list="${feats_dir}/data/${train_set}/audio_datasets.jsonl" \
|
||||
++cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
||||
++token_list="${token_list}" \
|
||||
++output_dir="${exp_dir}/exp/${model_dir}"
|
||||
++tokenizer_conf.token_list="${token_list}" \
|
||||
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
||||
++output_dir="${exp_dir}/exp/${model_dir}" &> ${log_file}
|
||||
fi
|
||||
|
||||
#
|
||||
## Testing Stage
|
||||
#if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
# echo "stage 5: Inference"
|
||||
# for dset in ${test_sets}; do
|
||||
# asr_exp=${exp_dir}/exp/${model_dir}
|
||||
# inference_tag="$(basename "${inference_config}" .yaml)"
|
||||
# _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
|
||||
# _logdir="${_dir}/logdir"
|
||||
# if [ -d ${_dir} ]; then
|
||||
# echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
|
||||
# exit 0
|
||||
# fi
|
||||
# mkdir -p "${_logdir}"
|
||||
# _data="${feats_dir}/data/${dset}"
|
||||
# key_file=${_data}/${scp}
|
||||
# num_scp_file="$(<${key_file} wc -l)"
|
||||
# _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
|
||||
# split_scps=
|
||||
# for n in $(seq "${_nj}"); do
|
||||
# split_scps+=" ${_logdir}/keys.${n}.scp"
|
||||
# done
|
||||
# # shellcheck disable=SC2086
|
||||
# utils/split_scp.pl "${key_file}" ${split_scps}
|
||||
# _opts=
|
||||
# if [ -n "${inference_config}" ]; then
|
||||
# _opts+="--config ${inference_config} "
|
||||
# fi
|
||||
# ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
||||
# python -m funasr.bin.asr_inference_launch \
|
||||
# --batch_size 1 \
|
||||
# --ngpu "${_ngpu}" \
|
||||
# --njob ${njob} \
|
||||
# --gpuid_list ${gpuid_list} \
|
||||
# --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
|
||||
# --cmvn_file ${feats_dir}/data/${train_set}/cmvn/am.mvn \
|
||||
# --key_file "${_logdir}"/keys.JOB.scp \
|
||||
# --asr_train_config "${asr_exp}"/config.yaml \
|
||||
# --asr_model_file "${asr_exp}"/"${inference_asr_model}" \
|
||||
# --output_dir "${_logdir}"/output.JOB \
|
||||
# --mode paraformer \
|
||||
# ${_opts}
|
||||
#
|
||||
# for f in token token_int score text; do
|
||||
# if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
|
||||
# for i in $(seq "${_nj}"); do
|
||||
# cat "${_logdir}/output.${i}/1best_recog/${f}"
|
||||
# done | sort -k1 >"${_dir}/${f}"
|
||||
# fi
|
||||
# done
|
||||
# python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
|
||||
# python utils/proce_text.py ${_data}/text ${_data}/text.proc
|
||||
# python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
|
||||
# tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
|
||||
# cat ${_dir}/text.cer.txt
|
||||
# done
|
||||
#fi
|
||||
#
|
||||
## Prepare files for ModelScope fine-tuning and inference
|
||||
#if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
||||
# echo "stage 6: ModelScope Preparation"
|
||||
# cp ${feats_dir}/data/${train_set}/cmvn/am.mvn ${exp_dir}/exp/${model_dir}/am.mvn
|
||||
# vocab_size=$(cat ${token_list} | wc -l)
|
||||
# python utils/gen_modelscope_configuration.py \
|
||||
# --am_model_name $inference_asr_model \
|
||||
# --mode paraformer \
|
||||
# --model_name paraformer \
|
||||
# --dataset aishell \
|
||||
# --output_dir $exp_dir/exp/$model_dir \
|
||||
# --vocab_size $vocab_size \
|
||||
# --nat _nat \
|
||||
# --tag $tag
|
||||
#fi
|
||||
|
||||
|
||||
# Testing Stage
|
||||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
||||
echo "stage 5: Inference"
|
||||
|
||||
if ${inference_device} == "cuda"; then
|
||||
nj=$(echo CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
else
|
||||
nj=$njob
|
||||
batch_size=1
|
||||
gpuid_list=""
|
||||
for JOB in $(seq ${nj}); do
|
||||
gpuid_list=CUDA_VISIBLE_DEVICES"-1,"
|
||||
done
|
||||
fi
|
||||
|
||||
for dset in ${test_sets}; do
|
||||
|
||||
inference_dir="${asr_exp}/${inference_checkpoint}/${dset}"
|
||||
_logdir="${inference_dir}/logdir"
|
||||
|
||||
mkdir -p "${_logdir}"
|
||||
data_dir="${feats_dir}/data/${dset}"
|
||||
key_file=${data_dir}/${inference_scp}
|
||||
|
||||
split_scps=
|
||||
for JOB in $(seq "${nj}"); do
|
||||
split_scps+=" ${_logdir}/keys.${JOB}.scp"
|
||||
done
|
||||
utils/split_scp.pl "${key_file}" ${split_scps}
|
||||
|
||||
for JOB in $(seq ${nj}); do
|
||||
{
|
||||
python ../../../funasr/bin/inference.py \
|
||||
--config-path="${exp_dir}/exp/${model_dir}" \
|
||||
--config-name="config.yaml" \
|
||||
++init_param="${exp_dir}/exp/${model_dir}/${inference_checkpoint}" \
|
||||
++tokenizer_conf.token_list="${token_list}" \
|
||||
++frontend_conf.cmvn_file="${feats_dir}/data/${train_set}/am.mvn" \
|
||||
++input="${_logdir}/keys.${JOB}.scp" \
|
||||
++output_dir="${inference_dir}/${JOB}" \
|
||||
++device="${inference_device}"
|
||||
}&
|
||||
|
||||
done
|
||||
wait
|
||||
|
||||
mkdir -p ${inference_dir}/1best_recog
|
||||
for f in token score text; do
|
||||
if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
|
||||
for JOB in $(seq "${nj}"); do
|
||||
cat "${inference_dir}/${JOB}/1best_recog/${f}"
|
||||
done | sort -k1 >"${inference_dir}/1best_recog/${f}"
|
||||
fi
|
||||
done
|
||||
|
||||
echo "Computing WER ..."
|
||||
cp ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
|
||||
cp ${data_dir}/text ${inference_dir}/1best_recog/text.ref
|
||||
python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
|
||||
tail -n 3 ${inference_dir}/1best_recog/text.cer
|
||||
done
|
||||
|
||||
fi
|
||||
|
||||
157
examples/aishell/paraformer/utils/compute_wer.py
Executable file
157
examples/aishell/paraformer/utils/compute_wer.py
Executable file
@ -0,0 +1,157 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
def compute_wer(ref_file,
|
||||
hyp_file,
|
||||
cer_detail_file):
|
||||
rst = {
|
||||
'Wrd': 0,
|
||||
'Corr': 0,
|
||||
'Ins': 0,
|
||||
'Del': 0,
|
||||
'Sub': 0,
|
||||
'Snt': 0,
|
||||
'Err': 0.0,
|
||||
'S.Err': 0.0,
|
||||
'wrong_words': 0,
|
||||
'wrong_sentences': 0
|
||||
}
|
||||
|
||||
hyp_dict = {}
|
||||
ref_dict = {}
|
||||
with open(hyp_file, 'r') as hyp_reader:
|
||||
for line in hyp_reader:
|
||||
key = line.strip().split()[0]
|
||||
value = line.strip().split()[1:]
|
||||
hyp_dict[key] = value
|
||||
with open(ref_file, 'r') as ref_reader:
|
||||
for line in ref_reader:
|
||||
key = line.strip().split()[0]
|
||||
value = line.strip().split()[1:]
|
||||
ref_dict[key] = value
|
||||
|
||||
cer_detail_writer = open(cer_detail_file, 'w')
|
||||
for hyp_key in hyp_dict:
|
||||
if hyp_key in ref_dict:
|
||||
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
|
||||
rst['Wrd'] += out_item['nwords']
|
||||
rst['Corr'] += out_item['cor']
|
||||
rst['wrong_words'] += out_item['wrong']
|
||||
rst['Ins'] += out_item['ins']
|
||||
rst['Del'] += out_item['del']
|
||||
rst['Sub'] += out_item['sub']
|
||||
rst['Snt'] += 1
|
||||
if out_item['wrong'] > 0:
|
||||
rst['wrong_sentences'] += 1
|
||||
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
|
||||
cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n')
|
||||
cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n')
|
||||
|
||||
if rst['Wrd'] > 0:
|
||||
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
|
||||
if rst['Snt'] > 0:
|
||||
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
|
||||
|
||||
cer_detail_writer.write('\n')
|
||||
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) +
|
||||
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n')
|
||||
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
|
||||
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
|
||||
|
||||
|
||||
def compute_wer_by_line(hyp,
|
||||
ref):
|
||||
hyp = list(map(lambda x: x.lower(), hyp))
|
||||
ref = list(map(lambda x: x.lower(), ref))
|
||||
|
||||
len_hyp = len(hyp)
|
||||
len_ref = len(ref)
|
||||
|
||||
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
|
||||
|
||||
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
|
||||
|
||||
for i in range(len_hyp + 1):
|
||||
cost_matrix[i][0] = i
|
||||
for j in range(len_ref + 1):
|
||||
cost_matrix[0][j] = j
|
||||
|
||||
for i in range(1, len_hyp + 1):
|
||||
for j in range(1, len_ref + 1):
|
||||
if hyp[i - 1] == ref[j - 1]:
|
||||
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
|
||||
else:
|
||||
substitution = cost_matrix[i - 1][j - 1] + 1
|
||||
insertion = cost_matrix[i - 1][j] + 1
|
||||
deletion = cost_matrix[i][j - 1] + 1
|
||||
|
||||
compare_val = [substitution, insertion, deletion]
|
||||
|
||||
min_val = min(compare_val)
|
||||
operation_idx = compare_val.index(min_val) + 1
|
||||
cost_matrix[i][j] = min_val
|
||||
ops_matrix[i][j] = operation_idx
|
||||
|
||||
match_idx = []
|
||||
i = len_hyp
|
||||
j = len_ref
|
||||
rst = {
|
||||
'nwords': len_ref,
|
||||
'cor': 0,
|
||||
'wrong': 0,
|
||||
'ins': 0,
|
||||
'del': 0,
|
||||
'sub': 0
|
||||
}
|
||||
while i >= 0 or j >= 0:
|
||||
i_idx = max(0, i)
|
||||
j_idx = max(0, j)
|
||||
|
||||
if ops_matrix[i_idx][j_idx] == 0: # correct
|
||||
if i - 1 >= 0 and j - 1 >= 0:
|
||||
match_idx.append((j - 1, i - 1))
|
||||
rst['cor'] += 1
|
||||
|
||||
i -= 1
|
||||
j -= 1
|
||||
|
||||
elif ops_matrix[i_idx][j_idx] == 2: # insert
|
||||
i -= 1
|
||||
rst['ins'] += 1
|
||||
|
||||
elif ops_matrix[i_idx][j_idx] == 3: # delete
|
||||
j -= 1
|
||||
rst['del'] += 1
|
||||
|
||||
elif ops_matrix[i_idx][j_idx] == 1: # substitute
|
||||
i -= 1
|
||||
j -= 1
|
||||
rst['sub'] += 1
|
||||
|
||||
if i < 0 and j >= 0:
|
||||
rst['del'] += 1
|
||||
elif j < 0 and i >= 0:
|
||||
rst['ins'] += 1
|
||||
|
||||
match_idx.reverse()
|
||||
wrong_cnt = cost_matrix[len_hyp][len_ref]
|
||||
rst['wrong'] = wrong_cnt
|
||||
|
||||
return rst
|
||||
|
||||
def print_cer_detail(rst):
|
||||
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
|
||||
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
|
||||
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
|
||||
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) != 4:
|
||||
print("usage : python compute-wer.py test.ref test.hyp test.wer")
|
||||
sys.exit(0)
|
||||
|
||||
ref_file = sys.argv[1]
|
||||
hyp_file = sys.argv[2]
|
||||
cer_detail_file = sys.argv[3]
|
||||
compute_wer(ref_file, hyp_file, cer_detail_file)
|
||||
@ -6,10 +6,10 @@
|
||||
#git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path}
|
||||
|
||||
## generate jsonl from wav.scp and text.txt
|
||||
python funasr/datasets/audio_datasets/scp2jsonl.py \
|
||||
++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \
|
||||
++data_type_list='["source", "target"]' \
|
||||
++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl
|
||||
#python funasr/datasets/audio_datasets/scp2jsonl.py \
|
||||
#++scp_file_list='["/Users/zhifu/funasr1.0/test_local/wav.scp", "/Users/zhifu/funasr1.0/test_local/text.txt"]' \
|
||||
#++data_type_list='["source", "target"]' \
|
||||
#++jsonl_file_out=/Users/zhifu/funasr1.0/test_local/audio_datasets.jsonl
|
||||
|
||||
|
||||
# torchrun \
|
||||
@ -24,5 +24,4 @@ python funasr/bin/train.py \
|
||||
++dataset_conf.batch_type="example" \
|
||||
++train_conf.max_epoch=2 \
|
||||
++dataset_conf.num_workers=4 \
|
||||
+output_dir="outputs/debug/ckpt/funasr2/exp2" \
|
||||
+debug="true"
|
||||
+output_dir="outputs/debug/ckpt/funasr2/exp2"
|
||||
@ -9,3 +9,6 @@ python funasr/bin/inference.py \
|
||||
+output_dir="./outputs/debug" \
|
||||
+device="cpu" \
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user