mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Add finetune resampling function under small data type.
This commit is contained in:
parent
716ea81703
commit
4afdd97df4
@ -107,7 +107,7 @@ class H5FileWrapper:
|
||||
return value[()]
|
||||
|
||||
|
||||
def sound_loader(path, float_dtype=None):
|
||||
def sound_loader(path, dest_sample_rate=16000, float_dtype=None):
|
||||
# The file is as follows:
|
||||
# utterance_id_A /some/where/a.wav
|
||||
# utterance_id_B /some/where/a.flac
|
||||
@ -115,7 +115,7 @@ def sound_loader(path, float_dtype=None):
|
||||
# NOTE(kamo): SoundScpReader doesn't support pipe-fashion
|
||||
# like Kaldi e.g. "cat a.wav |".
|
||||
# NOTE(kamo): The audio signal is normalized to [-1,1] range.
|
||||
loader = SoundScpReader(path, normalize=True, always_2d=False)
|
||||
loader = SoundScpReader(path, dest_sample_rate=16000, normalize=True, always_2d=False)
|
||||
|
||||
# SoundScpReader.__getitem__() returns Tuple[int, ndarray],
|
||||
# but ndarray is desired, so Adapter class is inserted here
|
||||
@ -139,7 +139,7 @@ def rand_int_loader(filepath, loader_type):
|
||||
DATA_TYPES = {
|
||||
"sound": dict(
|
||||
func=sound_loader,
|
||||
kwargs=["float_dtype"],
|
||||
kwargs=["dest_sample_rate","float_dtype"],
|
||||
help="Audio format types which supported by sndfile wav, flac, etc."
|
||||
"\n\n"
|
||||
" utterance_id_a a.wav\n"
|
||||
@ -282,6 +282,7 @@ class ESPnetDataset(AbsDataset):
|
||||
int_dtype: str = "long",
|
||||
max_cache_size: Union[float, int, str] = 0.0,
|
||||
max_cache_fd: int = 0,
|
||||
dest_sample_rate: int = 16000,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if len(path_name_type_list) == 0:
|
||||
@ -295,6 +296,7 @@ class ESPnetDataset(AbsDataset):
|
||||
self.float_dtype = float_dtype
|
||||
self.int_dtype = int_dtype
|
||||
self.max_cache_fd = max_cache_fd
|
||||
self.dest_sample_rate = dest_sample_rate
|
||||
|
||||
self.loader_dict = {}
|
||||
self.debug_info = {}
|
||||
@ -335,6 +337,8 @@ class ESPnetDataset(AbsDataset):
|
||||
for key2 in dic["kwargs"]:
|
||||
if key2 == "loader_type":
|
||||
kwargs["loader_type"] = loader_type
|
||||
elif key2 == "dest_sample_rate" and loader_type=="sound":
|
||||
kwargs["dest_sample_rate"] = self.dest_sample_rate
|
||||
elif key2 == "float_dtype":
|
||||
kwargs["float_dtype"] = self.float_dtype
|
||||
elif key2 == "int_dtype":
|
||||
|
||||
@ -4,6 +4,7 @@ from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import soundfile
|
||||
import librosa
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.fileio.read_text import read_2column_text
|
||||
@ -30,6 +31,7 @@ class SoundScpReader(collections.abc.Mapping):
|
||||
dtype=np.int16,
|
||||
always_2d: bool = False,
|
||||
normalize: bool = False,
|
||||
dest_sample_rate: int = 16000,
|
||||
):
|
||||
assert check_argument_types()
|
||||
self.fname = fname
|
||||
@ -37,15 +39,18 @@ class SoundScpReader(collections.abc.Mapping):
|
||||
self.always_2d = always_2d
|
||||
self.normalize = normalize
|
||||
self.data = read_2column_text(fname)
|
||||
self.dest_sample_rate = dest_sample_rate
|
||||
|
||||
def __getitem__(self, key):
|
||||
wav = self.data[key]
|
||||
if self.normalize:
|
||||
# soundfile.read normalizes data to [-1,1] if dtype is not given
|
||||
array, rate = soundfile.read(wav, always_2d=self.always_2d)
|
||||
array, rate = librosa.load(
|
||||
wav, sr=self.dest_sample_rate, mono=not self.always_2d
|
||||
)
|
||||
else:
|
||||
array, rate = soundfile.read(
|
||||
wav, dtype=self.dtype, always_2d=self.always_2d
|
||||
array, rate = librosa.load(
|
||||
wav, sr=self.dest_sample_rate, mono=not self.always_2d, dtype=self.dtype
|
||||
)
|
||||
|
||||
return rate, array
|
||||
|
||||
@ -1576,6 +1576,7 @@ class AbsTask(ABC):
|
||||
preprocess=iter_options.preprocess_fn,
|
||||
max_cache_size=iter_options.max_cache_size,
|
||||
max_cache_fd=iter_options.max_cache_fd,
|
||||
dest_sample_rate=args.frontend_conf["fs"],
|
||||
)
|
||||
cls.check_task_requirements(
|
||||
dataset, args.allow_variable_data_keys, train=iter_options.train
|
||||
|
||||
Loading…
Reference in New Issue
Block a user