sensevoice sanm

This commit is contained in:
游雁 2024-05-11 21:55:14 +08:00
parent 7d06f581db
commit 4a99a0ac27
3 changed files with 30 additions and 14 deletions

View File

@ -53,6 +53,12 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
self.prompt_ids_len = 0
self.retry = kwargs.get("retry", 5)
self.permute = False
from funasr.frontends.whisper_frontend import WhisperFrontend
if isinstance(self.frontend, WhisperFrontend):
self.permute = True
def get_source_len(self, index):
item = self.index_ds[index]
return self.index_ds.get_source_len(item)
@ -92,7 +98,8 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
if speech_lengths > self.batch_size:
continue
speech = speech.permute(0, 2, 1)
if self.permute:
speech = speech.permute(0, 2, 1)
target = item["target"]
if self.preprocessor_text:
target = self.preprocessor_text(target)
@ -100,8 +107,14 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
task = item.get("prompt", "<|ASR|>")
text_language = item.get("text_language", "<|zh|>")
prompt = f"{self.sos}{task}{text_language}"
prompt_ids = self.tokenizer.encode(prompt, allowed_special="all")
if isinstance(self.sos, str):
prompt = f"{self.sos}{task}{text_language}"
prompt_ids = self.tokenizer.encode(prompt, allowed_special="all")
else:
prompt = f"{task}{text_language}"
prompt_ids = self.tokenizer.encode(prompt, allowed_special="all")
prompt_ids = [self.sos] + prompt_ids
prompt_ids_len = len(prompt_ids) - 1 # [sos, task]
self.prompt_ids_len = prompt_ids_len
@ -110,7 +123,10 @@ class SenseVoiceDataset(torch.utils.data.Dataset):
if target_ids_len > 200:
continue
eos = self.tokenizer.encode(self.eos, allowed_special="all") # [eos]
if isinstance(self.eos, str):
eos = self.tokenizer.encode(self.eos, allowed_special="all") # [eos]
else:
eos = [self.eos]
ids = prompt_ids + target_ids + eos # [sos, task, lid, text, eos]
ids_lengths = len(ids)

View File

@ -1005,9 +1005,7 @@ class SenseVoiceSANM(nn.Module):
if specaug is not None:
specaug_class = tables.specaug_classes.get(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = tables.normalize_classes.get(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
@ -1026,7 +1024,7 @@ class SenseVoiceSANM(nn.Module):
self.ignore_id = ignore_id
self.specaug = specaug
self.normalize = normalize
self.encoder = encoder
self.decoder = decoder
@ -1040,12 +1038,9 @@ class SenseVoiceSANM(nn.Module):
self.error_calculator = None
self.share_embedding = share_embedding
if self.share_embedding:
self.decoder.embed = None
self.length_normalized_loss = length_normalized_loss
self.beam_search = None
self.activation_checkpoint = kwargs.get("activation_checkpoint", False)
def forward(
self,
@ -1139,6 +1134,7 @@ class SenseVoiceSANM(nn.Module):
stats = {}
# 1. Forward decoder
ys_pad[ys_pad == -1] = 0
decoder_out = self.decoder(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
if isinstance(decoder_out, (list, tuple)):
decoder_out = decoder_out[0]

View File

@ -20,6 +20,7 @@ class SentencepiecesTokenizer(BaseTokenizer):
# "TypeError: can't pickle SwigPyObject objects",
# when giving it as argument of "multiprocessing.Process()".
self.sp = None
self._build_sentence_piece_processor()
def __repr__(self):
return f'{self.__class__.__name__}(model="{self.bpemodel}")'
@ -38,10 +39,13 @@ class SentencepiecesTokenizer(BaseTokenizer):
self._build_sentence_piece_processor()
return self.sp.DecodePieces(list(tokens))
def encode(self, line: str) -> List[int]:
def encode(self, line: str, **kwargs) -> List[int]:
self._build_sentence_piece_processor()
return self.sp.EncodeAsIds(line)
def decode(self, line: List[int]):
def decode(self, line: List[int], **kwargs):
self._build_sentence_piece_processor()
return self.sp.DecodeIds(line)
def get_vocab_size(self):
return self.sp.GetPieceSize()