This commit is contained in:
嘉渊 2023-04-27 17:05:18 +08:00
parent a6047c2610
commit 4a702ea5c5
2 changed files with 80 additions and 182 deletions

View File

@ -8,30 +8,29 @@ gpu_num=2
count=1
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
njob=5
njob=1
train_cmd=utils/run.pl
infer_cmd=utils/run.pl
# general configuration
feats_dir="/nfs/wangjiaming.wjm/Funasr_data/aishell-1-fix-cmvn" #feature output dictionary
feats_dir="../DATA" #feature output dictionary
exp_dir="."
lang=zh
dumpdir=dump/fbank
feats_type=fbank
token_type=char
scp=feats.scp
type=kaldi_ark
scp=wav.scp
type=sound
stage=3
stop_stage=4
stop_stage=3
# feature configuration
feats_dim=80
sample_frequency=16000
nj=32
speed_perturb="0.9,1.0,1.1"
nj=64
# data
data_aishell=
raw_data=
data_url=www.openslr.org/resources/33
# exp tag
tag="exp1"
@ -66,10 +65,16 @@ else
_ngpu=0
fi
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data Download"
local/download_and_untar.sh ${raw_data} ${data_url} data_aishell
local/download_and_untar.sh ${raw_data} ${data_url} resource_aishell
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
# Data preparation
local/aishell_data_prep.sh ${data_aishell}/data_aishell/wav ${data_aishell}/data_aishell/transcript ${feats_dir}
local/aishell_data_prep.sh ${raw_data}/data_aishell/wav ${raw_data}/data_aishell/transcript ${feats_dir}
for x in train dev test; do
cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
@ -79,46 +84,9 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
done
fi
feat_train_dir=${feats_dir}/${dumpdir}/train; mkdir -p ${feat_train_dir}
feat_dev_dir=${feats_dir}/${dumpdir}/dev; mkdir -p ${feat_dev_dir}
feat_test_dir=${feats_dir}/${dumpdir}/test; mkdir -p ${feat_test_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Feature Generation"
# compute fbank features
fbankdir=${feats_dir}/fbank
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} --speed_perturb ${speed_perturb} \
${feats_dir}/data/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train
utils/fix_data_feat.sh ${fbankdir}/train
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \
${feats_dir}/data/dev ${exp_dir}/exp/make_fbank/dev ${fbankdir}/dev
utils/fix_data_feat.sh ${fbankdir}/dev
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \
${feats_dir}/data/test ${exp_dir}/exp/make_fbank/test ${fbankdir}/test
utils/fix_data_feat.sh ${fbankdir}/test
# compute global cmvn
utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} \
${fbankdir}/train ${exp_dir}/exp/make_fbank/train
# apply cmvn
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/train ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/train ${feat_train_dir}
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/dev ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/dev ${feat_dev_dir}
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
${fbankdir}/test ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/test ${feat_test_dir}
cp ${fbankdir}/train/text ${fbankdir}/train/speech_shape ${fbankdir}/train/text_shape ${feat_train_dir}
cp ${fbankdir}/dev/text ${fbankdir}/dev/speech_shape ${fbankdir}/dev/text_shape ${feat_dev_dir}
cp ${fbankdir}/test/text ${fbankdir}/test/speech_shape ${fbankdir}/test/text_shape ${feat_test_dir}
utils/fix_data_feat.sh ${feat_train_dir}
utils/fix_data_feat.sh ${feat_dev_dir}
utils/fix_data_feat.sh ${feat_test_dir}
#generate ark list
utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_train_dir} ${fbankdir}/train ${feat_train_dir}
utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_dev_dir} ${fbankdir}/dev ${feat_dev_dir}
echo "stage 1: Feature and CMVN Generation"
utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} ${feats_dir}/data/${train_set}
fi
token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt
@ -126,22 +94,14 @@ echo "dictionary: ${token_list}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: Dictionary Preparation"
mkdir -p ${feats_dir}/data/${lang}_token_list/char/
echo "make a dictionary"
echo "<blank>" > ${token_list}
echo "<s>" >> ${token_list}
echo "</s>" >> ${token_list}
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/train/text | cut -f 2- -d" " | tr " " "\n" \
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
num_token=$(cat ${token_list} | wc -l)
echo "<unk>" >> ${token_list}
vocab_size=$(cat ${token_list} | wc -l)
awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char
awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/train
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/dev
cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/train
cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/dev
fi
# Training Stage
@ -167,20 +127,15 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--use_preprocessor true \
--token_type char \
--token_list $token_list \
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/${scp},speech,${type} \
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/text,text,text \
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/speech_shape \
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/text_shape.char \
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/${scp},speech,${type} \
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/text,text,text \
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/speech_shape \
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/text_shape.char \
--data_dir ${feats_dir}/data \
--train_set ${train_set} \
--valid_set ${valid_set} \
--cmvn_file ${feats_dir}/data/${train_set}/cmvn/cmvn.mvn \
--resume true \
--output_dir ${exp_dir}/exp/${model_dir} \
--config $asr_config \
--ngpu $gpu_num \
--num_worker_count $count \
--multiprocessing_distributed true \
--dist_init_method $init_method \
--dist_world_size $world_size \
--dist_rank $rank \
@ -188,61 +143,4 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
} &
done
wait
fi
# Testing Stage
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: Inference"
for dset in ${test_sets}; do
asr_exp=${exp_dir}/exp/${model_dir}
inference_tag="$(basename "${inference_config}" .yaml)"
_dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
_logdir="${_dir}/logdir"
if [ -d ${_dir} ]; then
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
exit 0
fi
mkdir -p "${_logdir}"
_data="${feats_dir}/${dumpdir}/${dset}"
key_file=${_data}/${scp}
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
_opts=
if [ -n "${inference_config}" ]; then
_opts+="--config ${inference_config} "
fi
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
python -m funasr.bin.asr_inference_launch \
--batch_size 1 \
--ngpu "${_ngpu}" \
--njob ${njob} \
--gpuid_list ${gpuid_list} \
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
--key_file "${_logdir}"/keys.JOB.scp \
--asr_train_config "${asr_exp}"/config.yaml \
--asr_model_file "${asr_exp}"/"${inference_asr_model}" \
--output_dir "${_logdir}"/output.JOB \
--mode asr \
${_opts}
for f in token token_int score text; do
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${_dir}/${f}"
fi
done
python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
python utils/proce_text.py ${_data}/text ${_data}/text.proc
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
cat ${_dir}/text.cer.txt
done
fi
fi

View File

@ -33,7 +33,7 @@ raw_data=
data_url=www.openslr.org/resources/33
# exp tag
tag="exp2"
tag="exp1"
. utils/parse_options.sh || exit 1;
@ -145,58 +145,58 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
wait
fi
# Testing Stage
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "stage 4: Inference"
for dset in ${test_sets}; do
asr_exp=${exp_dir}/exp/${model_dir}
inference_tag="$(basename "${inference_config}" .yaml)"
_dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
_logdir="${_dir}/logdir"
if [ -d ${_dir} ]; then
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
exit 0
fi
mkdir -p "${_logdir}"
_data="${feats_dir}/${dumpdir}/${dset}"
key_file=${_data}/${scp}
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
_opts=
if [ -n "${inference_config}" ]; then
_opts+="--config ${inference_config} "
fi
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
python -m funasr.bin.asr_inference_launch \
--batch_size 1 \
--ngpu "${_ngpu}" \
--njob ${njob} \
--gpuid_list ${gpuid_list} \
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
--key_file "${_logdir}"/keys.JOB.scp \
--asr_train_config "${asr_exp}"/config.yaml \
--asr_model_file "${asr_exp}"/"${inference_asr_model}" \
--output_dir "${_logdir}"/output.JOB \
--mode paraformer \
${_opts}
for f in token token_int score text; do
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${_dir}/${f}"
fi
done
python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
python utils/proce_text.py ${_data}/text ${_data}/text.proc
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
cat ${_dir}/text.cer.txt
done
fi
## Testing Stage
#if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# echo "stage 4: Inference"
# for dset in ${test_sets}; do
# asr_exp=${exp_dir}/exp/${model_dir}
# inference_tag="$(basename "${inference_config}" .yaml)"
# _dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
# _logdir="${_dir}/logdir"
# if [ -d ${_dir} ]; then
# echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
# exit 0
# fi
# mkdir -p "${_logdir}"
# _data="${feats_dir}/${dumpdir}/${dset}"
# key_file=${_data}/${scp}
# num_scp_file="$(<${key_file} wc -l)"
# _nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
# split_scps=
# for n in $(seq "${_nj}"); do
# split_scps+=" ${_logdir}/keys.${n}.scp"
# done
# # shellcheck disable=SC2086
# utils/split_scp.pl "${key_file}" ${split_scps}
# _opts=
# if [ -n "${inference_config}" ]; then
# _opts+="--config ${inference_config} "
# fi
# ${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
# python -m funasr.bin.asr_inference_launch \
# --batch_size 1 \
# --ngpu "${_ngpu}" \
# --njob ${njob} \
# --gpuid_list ${gpuid_list} \
# --data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
# --key_file "${_logdir}"/keys.JOB.scp \
# --asr_train_config "${asr_exp}"/config.yaml \
# --asr_model_file "${asr_exp}"/"${inference_asr_model}" \
# --output_dir "${_logdir}"/output.JOB \
# --mode paraformer \
# ${_opts}
#
# for f in token token_int score text; do
# if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
# for i in $(seq "${_nj}"); do
# cat "${_logdir}/output.${i}/1best_recog/${f}"
# done | sort -k1 >"${_dir}/${f}"
# fi
# done
# python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
# python utils/proce_text.py ${_data}/text ${_data}/text.proc
# python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
# tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
# cat ${_dir}/text.cer.txt
# done
#fi