mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
merge inference.py and memory optimization
This commit is contained in:
parent
3cd3473bf7
commit
49be65031b
@ -30,7 +30,7 @@ from funasr.utils.types import str2bool
|
||||
from funasr.utils.types import str2triple_str
|
||||
from funasr.utils.types import str_or_none
|
||||
from funasr.utils import asr_utils, wav_utils, postprocess_utils
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend, WavFrontendOnline
|
||||
|
||||
header_colors = '\033[95m'
|
||||
end_colors = '\033[0m'
|
||||
@ -109,7 +109,7 @@ class Speech2VadSegment:
|
||||
fbanks, fbanks_len = self.frontend.forward_fbank(speech, speech_lengths)
|
||||
feats, feats_len = self.frontend.forward_lfr_cmvn(fbanks, fbanks_len)
|
||||
fbanks = to_device(fbanks, device=self.device)
|
||||
feats = to_device(feats, device=self.device)
|
||||
# feats = to_device(feats, device=self.device)
|
||||
feats_len = feats_len.int()
|
||||
else:
|
||||
raise Exception("Need to extract feats first, please configure frontend configuration")
|
||||
@ -138,6 +138,69 @@ class Speech2VadSegment:
|
||||
segments[batch_num] += segments_part[batch_num]
|
||||
return fbanks, segments
|
||||
|
||||
class Speech2VadSegmentOnline(Speech2VadSegment):
|
||||
"""Speech2VadSegmentOnline class
|
||||
|
||||
Examples:
|
||||
>>> import soundfile
|
||||
>>> speech2segment = Speech2VadSegmentOnline("vad_config.yml", "vad.pt")
|
||||
>>> audio, rate = soundfile.read("speech.wav")
|
||||
>>> speech2segment(audio)
|
||||
[[10, 230], [245, 450], ...]
|
||||
|
||||
"""
|
||||
def __init__(self, **kwargs):
|
||||
super(Speech2VadSegmentOnline, self).__init__(**kwargs)
|
||||
vad_cmvn_file = kwargs.get('vad_cmvn_file', None)
|
||||
self.frontend = None
|
||||
if self.vad_infer_args.frontend is not None:
|
||||
self.frontend = WavFrontendOnline(cmvn_file=vad_cmvn_file, **self.vad_infer_args.frontend_conf)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None,
|
||||
in_cache: Dict[str, torch.Tensor] = dict(), is_final: bool = False, max_end_sil: int = 800
|
||||
) -> Tuple[torch.Tensor, List[List[int]], torch.Tensor]:
|
||||
"""Inference
|
||||
|
||||
Args:
|
||||
speech: Input speech data
|
||||
Returns:
|
||||
text, token, token_int, hyp
|
||||
|
||||
"""
|
||||
assert check_argument_types()
|
||||
|
||||
# Input as audio signal
|
||||
if isinstance(speech, np.ndarray):
|
||||
speech = torch.tensor(speech)
|
||||
batch_size = speech.shape[0]
|
||||
segments = [[]] * batch_size
|
||||
if self.frontend is not None:
|
||||
feats, feats_len = self.frontend.forward(speech, speech_lengths, is_final)
|
||||
fbanks, _ = self.frontend.get_fbank()
|
||||
else:
|
||||
raise Exception("Need to extract feats first, please configure frontend configuration")
|
||||
if feats.shape[0]:
|
||||
feats = to_device(feats, device=self.device)
|
||||
feats_len = feats_len.int()
|
||||
waveforms = self.frontend.get_waveforms()
|
||||
|
||||
batch = {
|
||||
"feats": feats,
|
||||
"waveform": waveforms,
|
||||
"in_cache": in_cache,
|
||||
"is_final": is_final,
|
||||
"max_end_sil": max_end_sil
|
||||
}
|
||||
# a. To device
|
||||
batch = to_device(batch, device=self.device)
|
||||
segments, in_cache = self.vad_model.forward_online(**batch)
|
||||
# in_cache.update(batch['in_cache'])
|
||||
# in_cache = {key: value for key, value in batch['in_cache'].items()}
|
||||
return fbanks, segments, in_cache
|
||||
|
||||
|
||||
def inference(
|
||||
batch_size: int,
|
||||
@ -154,26 +217,43 @@ def inference(
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
num_workers: int = 1,
|
||||
online: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
inference_pipeline = inference_modelscope(
|
||||
batch_size=batch_size,
|
||||
ngpu=ngpu,
|
||||
log_level=log_level,
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
key_file=key_file,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
output_dir=output_dir,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
num_workers=num_workers,
|
||||
**kwargs,
|
||||
)
|
||||
if not online:
|
||||
inference_pipeline = inference_modelscope(
|
||||
batch_size=batch_size,
|
||||
ngpu=ngpu,
|
||||
log_level=log_level,
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
key_file=key_file,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
output_dir=output_dir,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
num_workers=num_workers,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
inference_pipeline = inference_modelscope_online(
|
||||
batch_size=batch_size,
|
||||
ngpu=ngpu,
|
||||
log_level=log_level,
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
key_file=key_file,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
output_dir=output_dir,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
num_workers=num_workers,
|
||||
**kwargs,
|
||||
)
|
||||
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
|
||||
|
||||
|
||||
def inference_modelscope(
|
||||
batch_size: int,
|
||||
ngpu: int,
|
||||
@ -192,9 +272,6 @@ def inference_modelscope(
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
ncpu = kwargs.get("ncpu", 1)
|
||||
torch.set_num_threads(ncpu)
|
||||
|
||||
if batch_size > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
if ngpu > 1:
|
||||
@ -282,6 +359,119 @@ def inference_modelscope(
|
||||
|
||||
return _forward
|
||||
|
||||
def inference_modelscope_online(
|
||||
batch_size: int,
|
||||
ngpu: int,
|
||||
log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
vad_infer_config: Optional[str],
|
||||
vad_model_file: Optional[str],
|
||||
vad_cmvn_file: Optional[str] = None,
|
||||
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
key_file: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
num_workers: int = 1,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if batch_size > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
if ngpu > 1:
|
||||
raise NotImplementedError("only single GPU decoding is supported")
|
||||
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
|
||||
# 2. Build speech2vadsegment
|
||||
speech2vadsegment_kwargs = dict(
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
|
||||
speech2vadsegment = Speech2VadSegmentOnline(**speech2vadsegment_kwargs)
|
||||
|
||||
def _forward(
|
||||
data_path_and_name_and_type,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
fs: dict = None,
|
||||
param_dict: dict = None,
|
||||
):
|
||||
# 3. Build data-iterator
|
||||
if data_path_and_name_and_type is None and raw_inputs is not None:
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = VADTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
|
||||
collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
file_count = 1
|
||||
# 7 .Start for-loop
|
||||
# FIXME(kamo): The output format should be discussed about
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
if output_path is not None:
|
||||
writer = DatadirWriter(output_path)
|
||||
ibest_writer = writer[f"1best_recog"]
|
||||
else:
|
||||
writer = None
|
||||
ibest_writer = None
|
||||
|
||||
vad_results = []
|
||||
batch_in_cache = param_dict['in_cache'] if param_dict is not None else dict()
|
||||
is_final = param_dict.get('is_final', False) if param_dict is not None else False
|
||||
max_end_sil = param_dict.get('max_end_sil', 800) if param_dict is not None else 800
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
batch['in_cache'] = batch_in_cache
|
||||
batch['is_final'] = is_final
|
||||
batch['max_end_sil'] = max_end_sil
|
||||
|
||||
# do vad segment
|
||||
_, results, param_dict['in_cache'] = speech2vadsegment(**batch)
|
||||
# param_dict['in_cache'] = batch['in_cache']
|
||||
if results:
|
||||
for i, _ in enumerate(keys):
|
||||
if results[i]:
|
||||
if "MODELSCOPE_ENVIRONMENT" in os.environ and os.environ["MODELSCOPE_ENVIRONMENT"] == "eas":
|
||||
results[i] = json.dumps(results[i])
|
||||
item = {'key': keys[i], 'value': results[i]}
|
||||
vad_results.append(item)
|
||||
if writer is not None:
|
||||
results[i] = json.loads(results[i])
|
||||
ibest_writer["text"][keys[i]] = "{}".format(results[i])
|
||||
|
||||
return vad_results
|
||||
|
||||
return _forward
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
@ -354,6 +544,11 @@ def get_parser():
|
||||
type=str,
|
||||
help="Global cmvn file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--online",
|
||||
type=str,
|
||||
help="decoding mode",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("infer related")
|
||||
group.add_argument(
|
||||
@ -377,3 +572,4 @@ def main(cmd=None):
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
@ -1,4 +1,9 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
import torch
|
||||
torch.set_num_threads(1)
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
@ -109,8 +114,8 @@ def inference_launch(mode, **kwargs):
|
||||
from funasr.bin.vad_inference import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
elif mode == "online":
|
||||
from funasr.bin.vad_inference_online import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
from funasr.bin.vad_inference import inference_modelscope_online
|
||||
return inference_modelscope_online(**kwargs)
|
||||
else:
|
||||
logging.info("Unknown decoding mode: {}".format(mode))
|
||||
return None
|
||||
|
||||
@ -311,7 +311,7 @@ class E2EVadModel(nn.Module):
|
||||
0.000001))
|
||||
|
||||
def ComputeScores(self, feats: torch.Tensor, in_cache: Dict[str, torch.Tensor]) -> None:
|
||||
scores = self.encoder(feats, in_cache) # return B * T * D
|
||||
scores = self.encoder(feats, in_cache).to('cpu') # return B * T * D
|
||||
assert scores.shape[1] == feats.shape[1], "The shape between feats and scores does not match"
|
||||
self.vad_opts.nn_eval_block_size = scores.shape[1]
|
||||
self.frm_cnt += scores.shape[1] # count total frames
|
||||
|
||||
@ -34,7 +34,7 @@ def load_cmvn(cmvn_file):
|
||||
means = np.array(means_list).astype(np.float)
|
||||
vars = np.array(vars_list).astype(np.float)
|
||||
cmvn = np.array([means, vars])
|
||||
cmvn = torch.as_tensor(cmvn)
|
||||
cmvn = torch.as_tensor(cmvn, dype=torch.float32)
|
||||
return cmvn
|
||||
|
||||
|
||||
@ -47,10 +47,10 @@ def apply_cmvn(inputs, cmvn): # noqa
|
||||
dtype = inputs.dtype
|
||||
frame, dim = inputs.shape
|
||||
|
||||
means = np.tile(cmvn[0:1, :dim], (frame, 1))
|
||||
vars = np.tile(cmvn[1:2, :dim], (frame, 1))
|
||||
inputs += torch.from_numpy(means).type(dtype).to(device)
|
||||
inputs *= torch.from_numpy(vars).type(dtype).to(device)
|
||||
means = cmvn[0:1, :dim]
|
||||
vars = cmvn[1:2, :dim]
|
||||
inputs += means.to(device)
|
||||
inputs *= vars.to(device)
|
||||
|
||||
return inputs.type(torch.float32)
|
||||
|
||||
|
||||
@ -217,7 +217,7 @@ class WavFrontendOnline(WavFrontend):
|
||||
frame_num = self.compute_frame_num(input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length)
|
||||
# update self.in_cache
|
||||
self.input_cache = input[:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length):]
|
||||
waveforms = np.empty(0, dtype=np.int16)
|
||||
waveforms = np.empty(0, dtype=np.float32)
|
||||
feats_pad = np.empty(0, dtype=np.float32)
|
||||
feats_lens = np.empty(0, dtype=np.int32)
|
||||
if frame_num:
|
||||
@ -237,7 +237,7 @@ class WavFrontendOnline(WavFrontend):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
feat = mat.astype(np.float32)
|
||||
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
||||
feats.append(mat)
|
||||
feats.append(feat)
|
||||
feats_lens.append(feat_len)
|
||||
|
||||
waveforms = np.stack(waveforms)
|
||||
|
||||
@ -20,6 +20,13 @@ class TestFSMNInferencePipelines(unittest.TestCase):
|
||||
rec_result = inference_pipeline(
|
||||
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example_8k.wav')
|
||||
logger.info("vad inference result: {0}".format(rec_result))
|
||||
assert rec_result[
|
||||
"text"] == "[[0, 1960], [2870, 6730], [7960, 10180], [12140, 14830], [15740, 19400], " \
|
||||
"[20220, 24230], [25540, 27290], [30070, 30970], [32070, 34280], [35990, 37050], " \
|
||||
"[39400, 41020], [41810, 47320], [48120, 52150], [53560, 58310], [59290, 62210], " \
|
||||
"[63110, 66420], [67300, 68280], [69670, 71770], [73100, 75550], [76850, 78500], " \
|
||||
"[79380, 83280], [85000, 92320], [93560, 94110], [94990, 95620], [96940, 97590], " \
|
||||
"[98400, 100530], [101600, 104890], [108780, 110900], [112020, 113460], [114210, 115030]]"
|
||||
|
||||
def test_16k(self):
|
||||
inference_pipeline = pipeline(
|
||||
@ -29,6 +36,10 @@ class TestFSMNInferencePipelines(unittest.TestCase):
|
||||
rec_result = inference_pipeline(
|
||||
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
|
||||
logger.info("vad inference result: {0}".format(rec_result))
|
||||
assert rec_result[
|
||||
"text"] == "[[70, 2340], [2620, 6200], [6480, 23670], [23950, 26250], [26780, 28990], " \
|
||||
"[29950, 31430], [31750, 37600], [38210, 46900], [47310, 49630], [49910, 56460], " \
|
||||
"[56740, 59540], [59820, 70450]"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
Loading…
Reference in New Issue
Block a user