update docs

This commit is contained in:
speech_asr 2023-02-14 19:38:31 +08:00
parent aaf9d88a79
commit 44e55e2c60

View File

@ -75,7 +75,7 @@ This stage processes the dictionary, which is used as a mapping between label ch
* `<unk>`: indicates the out-of-vocabulary token
## Stage 3: Training
This stage achieves the training of the specified model. To start training, you should manually set `exp_dir`, `CUDA_VISIBLE_DEVICES` and `gpu_num`, which have already been explained above. By default, the best `$keep_nbest_models` checkpoints on validation dataset will be averaged to generate a better model and adopted for decoding.
This stage achieves the training of the specified model. To start training, users should manually set `exp_dir`, `CUDA_VISIBLE_DEVICES` and `gpu_num`, which have already been explained above. By default, the best `$keep_nbest_models` checkpoints on validation dataset will be averaged to generate a better model and adopted for decoding.
* DDP Training
@ -83,20 +83,19 @@ We support the DistributedDataParallel (DDP) training and the detail can be foun
* DataLoader
[comment]: <> (We support two types of DataLoaders for small and large datasets, respectively. By default, the small DataLoader is used and you can set `dataset_type=large` to enable large DataLoader. For small DataLoader, )
We support an optional iterable-style DataLoader based on [Pytorch Iterable-style DataPipes](https://pytorch.org/data/beta/torchdata.datapipes.iter.html) for large dataset and you can set `dataset_type=large` to enable it.
We support an optional iterable-style DataLoader based on [Pytorch Iterable-style DataPipes](https://pytorch.org/data/beta/torchdata.datapipes.iter.html) for large dataset and users can set `dataset_type=large` to enable it.
* Configuration
The parameters of the training, including model, optimization, dataset, etc., are specified by a YAML file in `conf` directory. Also, you can directly specify the parameters in `run.sh` recipe. Please avoid to specify the same parameters in both the YAML file and the recipe.
The parameters of the training, including model, optimization, dataset, etc., can be set by a YAML file in `conf` directory. Also, users can directly set the parameters in `run.sh` recipe. Please avoid to set the same parameters in both the YAML file and the recipe.
* Training Steps
We support two parameters to specify the training steps, namely `max_epoch` and `max_update`. `max_epoch` indicates the total training epochs while `max_update` indicates the total training steps. If these two parameters are specified at the same time, once the training reaches any one of the two parameters, the training will be stopped.
We support two parameters to specify the training steps, namely `max_epoch` and `max_update`. `max_epoch` indicates the total training epochs while `max_update` indicates the total training steps. If these two parameters are specified at the same time, once the training reaches any one of these two parameters, the training will be stopped.
* Tensorboard
You can use tensorboard to observe the loss, learning rate, etc. Please run the following command:
Users can use tensorboard to observe the loss, learning rate, etc. Please run the following command:
```
tensorboard --logdir ${exp_dir}/exp/${model_dir}/tensorboard/train
```