mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
3fb2ca8378
0
funasr/modules/eend_ola/__init__.py
Normal file
0
funasr/modules/eend_ola/__init__.py
Normal file
127
funasr/modules/eend_ola/encoder.py
Normal file
127
funasr/modules/eend_ola/encoder.py
Normal file
@ -0,0 +1,127 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
|
||||
class MultiHeadSelfAttention(nn.Module):
|
||||
def __init__(self, n_units, h=8, dropout_rate=0.1):
|
||||
super(MultiHeadSelfAttention, self).__init__()
|
||||
self.linearQ = nn.Linear(n_units, n_units)
|
||||
self.linearK = nn.Linear(n_units, n_units)
|
||||
self.linearV = nn.Linear(n_units, n_units)
|
||||
self.linearO = nn.Linear(n_units, n_units)
|
||||
self.d_k = n_units // h
|
||||
self.h = h
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def __call__(self, x, batch_size, x_mask):
|
||||
q = self.linearQ(x).view(batch_size, -1, self.h, self.d_k)
|
||||
k = self.linearK(x).view(batch_size, -1, self.h, self.d_k)
|
||||
v = self.linearV(x).view(batch_size, -1, self.h, self.d_k)
|
||||
scores = torch.matmul(
|
||||
q.permute(0, 2, 1, 3), k.permute(0, 2, 3, 1)) / math.sqrt(self.d_k)
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(1)
|
||||
scores = scores.masked_fill(x_mask == 0, -1e9)
|
||||
self.att = F.softmax(scores, dim=3)
|
||||
p_att = self.dropout(self.att)
|
||||
x = torch.matmul(p_att, v.permute(0, 2, 1, 3))
|
||||
x = x.permute(0, 2, 1, 3).contiguous().view(-1, self.h * self.d_k)
|
||||
return self.linearO(x)
|
||||
|
||||
|
||||
class PositionwiseFeedForward(nn.Module):
|
||||
def __init__(self, n_units, d_units, dropout_rate):
|
||||
super(PositionwiseFeedForward, self).__init__()
|
||||
self.linear1 = nn.Linear(n_units, d_units)
|
||||
self.linear2 = nn.Linear(d_units, n_units)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.linear2(self.dropout(F.relu(self.linear1(x))))
|
||||
|
||||
|
||||
class PositionalEncoding(torch.nn.Module):
|
||||
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.reverse = reverse
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x):
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.d_model)
|
||||
if self.reverse:
|
||||
position = torch.arange(
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
||||
).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale + self.pe[:, : x.size(1)]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(self, idim, n_layers, n_units,
|
||||
e_units=2048, h=8, dropout_rate=0.1, use_pos_emb=False):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.lnorm_in = nn.LayerNorm(n_units)
|
||||
self.n_layers = n_layers
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
for i in range(n_layers):
|
||||
setattr(self, '{}{:d}'.format("lnorm1_", i),
|
||||
nn.LayerNorm(n_units))
|
||||
setattr(self, '{}{:d}'.format("self_att_", i),
|
||||
MultiHeadSelfAttention(n_units, h))
|
||||
setattr(self, '{}{:d}'.format("lnorm2_", i),
|
||||
nn.LayerNorm(n_units))
|
||||
setattr(self, '{}{:d}'.format("ff_", i),
|
||||
PositionwiseFeedForward(n_units, e_units, dropout_rate))
|
||||
self.lnorm_out = nn.LayerNorm(n_units)
|
||||
if use_pos_emb:
|
||||
self.pos_enc = torch.nn.Sequential(
|
||||
torch.nn.Linear(idim, n_units),
|
||||
torch.nn.LayerNorm(n_units),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
torch.nn.ReLU(),
|
||||
PositionalEncoding(n_units, dropout_rate),
|
||||
)
|
||||
else:
|
||||
self.linear_in = nn.Linear(idim, n_units)
|
||||
self.pos_enc = None
|
||||
|
||||
def __call__(self, x, x_mask=None):
|
||||
BT_size = x.shape[0] * x.shape[1]
|
||||
if self.pos_enc is not None:
|
||||
e = self.pos_enc(x)
|
||||
e = e.view(BT_size, -1)
|
||||
else:
|
||||
e = self.linear_in(x.reshape(BT_size, -1))
|
||||
for i in range(self.n_layers):
|
||||
e = getattr(self, '{}{:d}'.format("lnorm1_", i))(e)
|
||||
s = getattr(self, '{}{:d}'.format("self_att_", i))(e, x.shape[0], x_mask)
|
||||
e = e + self.dropout(s)
|
||||
e = getattr(self, '{}{:d}'.format("lnorm2_", i))(e)
|
||||
s = getattr(self, '{}{:d}'.format("ff_", i))(e)
|
||||
e = e + self.dropout(s)
|
||||
return self.lnorm_out(e)
|
||||
50
funasr/modules/eend_ola/encoder_decoder_attractor.py
Normal file
50
funasr/modules/eend_ola/encoder_decoder_attractor.py
Normal file
@ -0,0 +1,50 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
|
||||
class EncoderDecoderAttractor(nn.Module):
|
||||
|
||||
def __init__(self, n_units, encoder_dropout=0.1, decoder_dropout=0.1):
|
||||
super(EncoderDecoderAttractor, self).__init__()
|
||||
self.enc0_dropout = nn.Dropout(encoder_dropout)
|
||||
self.encoder = nn.LSTM(n_units, n_units, 1, batch_first=True, dropout=encoder_dropout)
|
||||
self.dec0_dropout = nn.Dropout(decoder_dropout)
|
||||
self.decoder = nn.LSTM(n_units, n_units, 1, batch_first=True, dropout=decoder_dropout)
|
||||
self.counter = nn.Linear(n_units, 1)
|
||||
self.n_units = n_units
|
||||
|
||||
def forward_core(self, xs, zeros):
|
||||
ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).to(torch.float32).to(xs[0].device)
|
||||
xs = [self.enc0_dropout(x) for x in xs]
|
||||
xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1)
|
||||
xs = nn.utils.rnn.pack_padded_sequence(xs, ilens, batch_first=True, enforce_sorted=False)
|
||||
_, (hx, cx) = self.encoder(xs)
|
||||
zlens = torch.from_numpy(np.array([z.shape[0] for z in zeros])).to(torch.float32).to(zeros[0].device)
|
||||
max_zlen = torch.max(zlens).to(torch.int).item()
|
||||
zeros = [self.enc0_dropout(z) for z in zeros]
|
||||
zeros = nn.utils.rnn.pad_sequence(zeros, batch_first=True, padding_value=-1)
|
||||
zeros = nn.utils.rnn.pack_padded_sequence(zeros, zlens, batch_first=True, enforce_sorted=False)
|
||||
attractors, (_, _) = self.decoder(zeros, (hx, cx))
|
||||
attractors = nn.utils.rnn.pad_packed_sequence(attractors, batch_first=True, padding_value=-1,
|
||||
total_length=max_zlen)[0]
|
||||
attractors = [att[:zlens[i].to(torch.int).item()] for i, att in enumerate(attractors)]
|
||||
return attractors
|
||||
|
||||
def forward(self, xs, n_speakers):
|
||||
zeros = [torch.zeros(n_spk + 1, self.n_units).to(torch.float32).to(xs[0].device) for n_spk in n_speakers]
|
||||
attractors = self.forward_core(xs, zeros)
|
||||
labels = torch.cat([torch.from_numpy(np.array([[1] * n_spk + [0]], np.float32)) for n_spk in n_speakers], dim=1)
|
||||
labels = labels.to(xs[0].device)
|
||||
logit = torch.cat([self.counter(att).view(-1, n_spk + 1) for att, n_spk in zip(attractors, n_speakers)], dim=1)
|
||||
loss = F.binary_cross_entropy(torch.sigmoid(logit), labels)
|
||||
|
||||
attractors = [att[slice(0, att.shape[0] - 1)] for att in attractors]
|
||||
return loss, attractors
|
||||
|
||||
def estimate(self, xs, max_n_speakers=15):
|
||||
zeros = [torch.zeros(max_n_speakers, self.n_units).to(torch.float32).to(xs[0].device) for _ in xs]
|
||||
attractors = self.forward_core(xs, zeros)
|
||||
probs = [torch.sigmoid(torch.flatten(self.counter(att))) for att in attractors]
|
||||
return attractors, probs
|
||||
67
funasr/modules/eend_ola/utils/losses.py
Normal file
67
funasr/modules/eend_ola/utils/losses.py
Normal file
@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from itertools import permutations
|
||||
from torch import nn
|
||||
|
||||
|
||||
def standard_loss(ys, ts, label_delay=0):
|
||||
losses = [F.binary_cross_entropy(torch.sigmoid(y), t) * len(y) for y, t in zip(ys, ts)]
|
||||
loss = torch.sum(torch.stack(losses))
|
||||
n_frames = torch.from_numpy(np.array(np.sum([t.shape[0] for t in ts]))).to(torch.float32).to(ys[0].device)
|
||||
loss = loss / n_frames
|
||||
return loss
|
||||
|
||||
|
||||
def batch_pit_n_speaker_loss(ys, ts, n_speakers_list):
|
||||
max_n_speakers = ts[0].shape[1]
|
||||
olens = [y.shape[0] for y in ys]
|
||||
ys = nn.utils.rnn.pad_sequence(ys, batch_first=True, padding_value=-1)
|
||||
ys_mask = [torch.ones(olen).to(ys.device) for olen in olens]
|
||||
ys_mask = torch.nn.utils.rnn.pad_sequence(ys_mask, batch_first=True, padding_value=0).unsqueeze(-1)
|
||||
|
||||
losses = []
|
||||
for shift in range(max_n_speakers):
|
||||
ts_roll = [torch.roll(t, -shift, dims=1) for t in ts]
|
||||
ts_roll = nn.utils.rnn.pad_sequence(ts_roll, batch_first=True, padding_value=-1)
|
||||
loss = F.binary_cross_entropy(torch.sigmoid(ys), ts_roll, reduction='none')
|
||||
if ys_mask is not None:
|
||||
loss = loss * ys_mask
|
||||
loss = torch.sum(loss, dim=1)
|
||||
losses.append(loss)
|
||||
losses = torch.stack(losses, dim=2)
|
||||
|
||||
perms = np.array(list(permutations(range(max_n_speakers)))).astype(np.float32)
|
||||
perms = torch.from_numpy(perms).to(losses.device)
|
||||
y_ind = torch.arange(max_n_speakers, dtype=torch.float32, device=losses.device)
|
||||
t_inds = torch.fmod(perms - y_ind, max_n_speakers).to(torch.long)
|
||||
|
||||
losses_perm = []
|
||||
for t_ind in t_inds:
|
||||
losses_perm.append(
|
||||
torch.mean(losses[:, y_ind.to(torch.long), t_ind], dim=1))
|
||||
losses_perm = torch.stack(losses_perm, dim=1)
|
||||
|
||||
def select_perm_indices(num, max_num):
|
||||
perms = list(permutations(range(max_num)))
|
||||
sub_perms = list(permutations(range(num)))
|
||||
return [
|
||||
[x[:num] for x in perms].index(perm)
|
||||
for perm in sub_perms]
|
||||
|
||||
masks = torch.full_like(losses_perm, device=losses.device, fill_value=float('inf'))
|
||||
for i, t in enumerate(ts):
|
||||
n_speakers = n_speakers_list[i]
|
||||
indices = select_perm_indices(n_speakers, max_n_speakers)
|
||||
masks[i, indices] = 0
|
||||
losses_perm += masks
|
||||
|
||||
min_loss = torch.sum(torch.min(losses_perm, dim=1)[0])
|
||||
n_frames = torch.from_numpy(np.array(np.sum([t.shape[0] for t in ts]))).to(losses.device)
|
||||
min_loss = min_loss / n_frames
|
||||
|
||||
min_indices = torch.argmin(losses_perm, dim=1)
|
||||
labels_perm = [t[:, perms[idx].to(torch.long)] for t, idx in zip(ts, min_indices)]
|
||||
labels_perm = [t[:, :n_speakers] for t, n_speakers in zip(labels_perm, n_speakers_list)]
|
||||
|
||||
return min_loss, labels_perm
|
||||
95
funasr/modules/eend_ola/utils/power.py
Normal file
95
funasr/modules/eend_ola/utils/power.py
Normal file
@ -0,0 +1,95 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.multiprocessing
|
||||
import torch.nn.functional as F
|
||||
from itertools import combinations
|
||||
from itertools import permutations
|
||||
|
||||
|
||||
def generate_mapping_dict(max_speaker_num=6, max_olp_speaker_num=3):
|
||||
all_kinds = []
|
||||
all_kinds.append(0)
|
||||
for i in range(max_olp_speaker_num):
|
||||
selected_num = i + 1
|
||||
coms = np.array(list(combinations(np.arange(max_speaker_num), selected_num)))
|
||||
for com in coms:
|
||||
tmp = np.zeros(max_speaker_num)
|
||||
tmp[com] = 1
|
||||
item = int(raw_dec_trans(tmp.reshape(1, -1), max_speaker_num)[0])
|
||||
all_kinds.append(item)
|
||||
all_kinds_order = sorted(all_kinds)
|
||||
|
||||
mapping_dict = {}
|
||||
mapping_dict['dec2label'] = {}
|
||||
mapping_dict['label2dec'] = {}
|
||||
for i in range(len(all_kinds_order)):
|
||||
dec = all_kinds_order[i]
|
||||
mapping_dict['dec2label'][dec] = i
|
||||
mapping_dict['label2dec'][i] = dec
|
||||
oov_id = len(all_kinds_order)
|
||||
mapping_dict['oov'] = oov_id
|
||||
return mapping_dict
|
||||
|
||||
|
||||
def raw_dec_trans(x, max_speaker_num):
|
||||
num_list = []
|
||||
for i in range(max_speaker_num):
|
||||
num_list.append(x[:, i])
|
||||
base = 1
|
||||
T = x.shape[0]
|
||||
res = np.zeros((T))
|
||||
for num in num_list:
|
||||
res += num * base
|
||||
base = base * 2
|
||||
return res
|
||||
|
||||
|
||||
def mapping_func(num, mapping_dict):
|
||||
if num in mapping_dict['dec2label'].keys():
|
||||
label = mapping_dict['dec2label'][num]
|
||||
else:
|
||||
label = mapping_dict['oov']
|
||||
return label
|
||||
|
||||
|
||||
def dec_trans(x, max_speaker_num, mapping_dict):
|
||||
num_list = []
|
||||
for i in range(max_speaker_num):
|
||||
num_list.append(x[:, i])
|
||||
base = 1
|
||||
T = x.shape[0]
|
||||
res = np.zeros((T))
|
||||
for num in num_list:
|
||||
res += num * base
|
||||
base = base * 2
|
||||
res = np.array([mapping_func(i, mapping_dict) for i in res])
|
||||
return res
|
||||
|
||||
|
||||
def create_powerlabel(label, mapping_dict, max_speaker_num=6, max_olp_speaker_num=3):
|
||||
T, C = label.shape
|
||||
padding_label = np.zeros((T, max_speaker_num))
|
||||
padding_label[:, :C] = label
|
||||
out_label = dec_trans(padding_label, max_speaker_num, mapping_dict)
|
||||
out_label = torch.from_numpy(out_label)
|
||||
return out_label
|
||||
|
||||
|
||||
def generate_perm_pse(label, n_speaker, mapping_dict, max_speaker_num, max_olp_speaker_num=3):
|
||||
perms = np.array(list(permutations(range(n_speaker)))).astype(np.float32)
|
||||
perms = torch.from_numpy(perms).to(label.device).to(torch.int64)
|
||||
perm_labels = [label[:, perm] for perm in perms]
|
||||
perm_pse_labels = [create_powerlabel(perm_label.cpu().numpy(), mapping_dict, max_speaker_num).
|
||||
to(perm_label.device, non_blocking=True) for perm_label in perm_labels]
|
||||
return perm_labels, perm_pse_labels
|
||||
|
||||
|
||||
def generate_min_pse(label, n_speaker, mapping_dict, max_speaker_num, pse_logit, max_olp_speaker_num=3):
|
||||
perm_labels, perm_pse_labels = generate_perm_pse(label, n_speaker, mapping_dict, max_speaker_num,
|
||||
max_olp_speaker_num=max_olp_speaker_num)
|
||||
losses = [F.cross_entropy(input=pse_logit, target=perm_pse_label.to(torch.long)) * len(pse_logit)
|
||||
for perm_pse_label in perm_pse_labels]
|
||||
loss = torch.stack(losses)
|
||||
min_index = torch.argmin(loss)
|
||||
selected_perm_label, selected_pse_label = perm_labels[min_index], perm_pse_labels[min_index]
|
||||
return selected_perm_label, selected_pse_label
|
||||
159
funasr/modules/eend_ola/utils/report.py
Normal file
159
funasr/modules/eend_ola/utils/report.py
Normal file
@ -0,0 +1,159 @@
|
||||
import copy
|
||||
import numpy as np
|
||||
import time
|
||||
import torch
|
||||
from eend.utils.power import create_powerlabel
|
||||
from itertools import combinations
|
||||
|
||||
metrics = [
|
||||
('diarization_error', 'speaker_scored', 'DER'),
|
||||
('speech_miss', 'speech_scored', 'SAD_MR'),
|
||||
('speech_falarm', 'speech_scored', 'SAD_FR'),
|
||||
('speaker_miss', 'speaker_scored', 'MI'),
|
||||
('speaker_falarm', 'speaker_scored', 'FA'),
|
||||
('speaker_error', 'speaker_scored', 'CF'),
|
||||
('correct', 'frames', 'accuracy')
|
||||
]
|
||||
|
||||
|
||||
def recover_prediction(y, n_speaker):
|
||||
if n_speaker <= 1:
|
||||
return y
|
||||
elif n_speaker == 2:
|
||||
com_index = torch.from_numpy(
|
||||
np.array(list(combinations(np.arange(n_speaker), 2)))).to(
|
||||
y.dtype)
|
||||
num_coms = com_index.shape[0]
|
||||
y_single = y[:, :-num_coms]
|
||||
y_olp = y[:, -num_coms:]
|
||||
olp_map_index = torch.where(y_olp > 0.5)
|
||||
olp_map_index = torch.stack(olp_map_index, dim=1)
|
||||
com_map_index = com_index[olp_map_index[:, -1]]
|
||||
speaker_map_index = torch.from_numpy(np.array(com_map_index)).view(-1).to(torch.int64)
|
||||
frame_map_index = olp_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(
|
||||
torch.int64)
|
||||
y_single[frame_map_index] = 0
|
||||
y_single[frame_map_index, speaker_map_index] = 1
|
||||
return y_single
|
||||
else:
|
||||
olp2_com_index = torch.from_numpy(np.array(list(combinations(np.arange(n_speaker), 2)))).to(y.dtype)
|
||||
olp2_num_coms = olp2_com_index.shape[0]
|
||||
olp3_com_index = torch.from_numpy(np.array(list(combinations(np.arange(n_speaker), 3)))).to(y.dtype)
|
||||
olp3_num_coms = olp3_com_index.shape[0]
|
||||
y_single = y[:, :n_speaker]
|
||||
y_olp2 = y[:, n_speaker:n_speaker + olp2_num_coms]
|
||||
y_olp3 = y[:, -olp3_num_coms:]
|
||||
|
||||
olp3_map_index = torch.where(y_olp3 > 0.5)
|
||||
olp3_map_index = torch.stack(olp3_map_index, dim=1)
|
||||
olp3_com_map_index = olp3_com_index[olp3_map_index[:, -1]]
|
||||
olp3_speaker_map_index = torch.from_numpy(np.array(olp3_com_map_index)).view(-1).to(torch.int64)
|
||||
olp3_frame_map_index = olp3_map_index[:, 0][:, None].repeat([1, 3]).view(-1).to(torch.int64)
|
||||
y_single[olp3_frame_map_index] = 0
|
||||
y_single[olp3_frame_map_index, olp3_speaker_map_index] = 1
|
||||
y_olp2[olp3_frame_map_index] = 0
|
||||
|
||||
olp2_map_index = torch.where(y_olp2 > 0.5)
|
||||
olp2_map_index = torch.stack(olp2_map_index, dim=1)
|
||||
olp2_com_map_index = olp2_com_index[olp2_map_index[:, -1]]
|
||||
olp2_speaker_map_index = torch.from_numpy(np.array(olp2_com_map_index)).view(-1).to(torch.int64)
|
||||
olp2_frame_map_index = olp2_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(torch.int64)
|
||||
y_single[olp2_frame_map_index] = 0
|
||||
y_single[olp2_frame_map_index, olp2_speaker_map_index] = 1
|
||||
return y_single
|
||||
|
||||
|
||||
class PowerReporter():
|
||||
def __init__(self, valid_data_loader, mapping_dict, max_n_speaker):
|
||||
valid_data_loader_cp = copy.deepcopy(valid_data_loader)
|
||||
self.valid_data_loader = valid_data_loader_cp
|
||||
del valid_data_loader
|
||||
self.mapping_dict = mapping_dict
|
||||
self.max_n_speaker = max_n_speaker
|
||||
|
||||
def report(self, model, eidx, device):
|
||||
self.report_val(model, eidx, device)
|
||||
|
||||
def report_val(self, model, eidx, device):
|
||||
model.eval()
|
||||
ud_valid_start = time.time()
|
||||
valid_res, valid_loss, stats_keys, vad_valid_accuracy = self.report_core(model, self.valid_data_loader, device)
|
||||
|
||||
# Epoch Display
|
||||
valid_der = valid_res['diarization_error'] / valid_res['speaker_scored']
|
||||
valid_accuracy = valid_res['correct'].to(torch.float32) / valid_res['frames'] * 100
|
||||
vad_valid_accuracy = vad_valid_accuracy * 100
|
||||
print('Epoch ', eidx + 1, 'Valid Loss ', valid_loss, 'Valid_DER %.5f' % valid_der,
|
||||
'Valid_Accuracy %.5f%% ' % valid_accuracy, 'VAD_Valid_Accuracy %.5f%% ' % vad_valid_accuracy)
|
||||
ud_valid = (time.time() - ud_valid_start) / 60.
|
||||
print('Valid cost time ... ', ud_valid)
|
||||
|
||||
def inv_mapping_func(self, label, mapping_dict):
|
||||
if not isinstance(label, int):
|
||||
label = int(label)
|
||||
if label in mapping_dict['label2dec'].keys():
|
||||
num = mapping_dict['label2dec'][label]
|
||||
else:
|
||||
num = -1
|
||||
return num
|
||||
|
||||
def report_core(self, model, data_loader, device):
|
||||
res = {}
|
||||
for item in metrics:
|
||||
res[item[0]] = 0.
|
||||
res[item[1]] = 0.
|
||||
with torch.no_grad():
|
||||
loss_s = 0.
|
||||
uidx = 0
|
||||
for xs, ts, orders in data_loader:
|
||||
xs = [x.to(device) for x in xs]
|
||||
ts = [t.to(device) for t in ts]
|
||||
orders = [o.to(device) for o in orders]
|
||||
loss, pit_loss, mpit_loss, att_loss, ys, logits, labels, attractors = model(xs, ts, orders)
|
||||
loss_s += loss.item()
|
||||
uidx += 1
|
||||
|
||||
for logit, t, att in zip(logits, labels, attractors):
|
||||
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1) # (T, )
|
||||
oov_index = torch.where(pred == self.mapping_dict['oov'])[0]
|
||||
for i in oov_index:
|
||||
if i > 0:
|
||||
pred[i] = pred[i - 1]
|
||||
else:
|
||||
pred[i] = 0
|
||||
pred = [self.inv_mapping_func(i, self.mapping_dict) for i in pred]
|
||||
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
|
||||
decisions = torch.from_numpy(
|
||||
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)).to(att.device).to(
|
||||
torch.float32)
|
||||
decisions = decisions[:, :att.shape[0]]
|
||||
|
||||
stats = self.calc_diarization_error(decisions, t)
|
||||
res['speaker_scored'] += stats['speaker_scored']
|
||||
res['speech_scored'] += stats['speech_scored']
|
||||
res['frames'] += stats['frames']
|
||||
for item in metrics:
|
||||
res[item[0]] += stats[item[0]]
|
||||
loss_s /= uidx
|
||||
vad_acc = 0
|
||||
|
||||
return res, loss_s, stats.keys(), vad_acc
|
||||
|
||||
def calc_diarization_error(self, decisions, label, label_delay=0):
|
||||
label = label[:len(label) - label_delay, ...]
|
||||
n_ref = torch.sum(label, dim=-1)
|
||||
n_sys = torch.sum(decisions, dim=-1)
|
||||
res = {}
|
||||
res['speech_scored'] = torch.sum(n_ref > 0)
|
||||
res['speech_miss'] = torch.sum((n_ref > 0) & (n_sys == 0))
|
||||
res['speech_falarm'] = torch.sum((n_ref == 0) & (n_sys > 0))
|
||||
res['speaker_scored'] = torch.sum(n_ref)
|
||||
res['speaker_miss'] = torch.sum(torch.max(n_ref - n_sys, torch.zeros_like(n_ref)))
|
||||
res['speaker_falarm'] = torch.sum(torch.max(n_sys - n_ref, torch.zeros_like(n_ref)))
|
||||
n_map = torch.sum(((label == 1) & (decisions == 1)), dim=-1).to(torch.float32)
|
||||
res['speaker_error'] = torch.sum(torch.min(n_ref, n_sys) - n_map)
|
||||
res['correct'] = torch.sum(label == decisions) / label.shape[1]
|
||||
res['diarization_error'] = (
|
||||
res['speaker_miss'] + res['speaker_falarm'] + res['speaker_error'])
|
||||
res['frames'] = len(label)
|
||||
return res
|
||||
Loading…
Reference in New Issue
Block a user