update bicif, bicif seaco

This commit is contained in:
shixian.shi 2023-12-28 11:25:49 +08:00
parent 4719ca44c6
commit 3e3eed1945
7 changed files with 833 additions and 809 deletions

View File

@ -2,7 +2,7 @@
# download model
local_path_root=../modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404
local_path=${local_path_root}/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
git clone https://www.modelscope.cn/damo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git ${local_path}

View File

@ -1,338 +0,0 @@
import logging
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import tempfile
import codecs
import requests
import re
import copy
import torch
import torch.nn as nn
import random
import numpy as np
import time
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr.metrics.compute_acc import th_accuracy
from funasr.train_utils.device_funcs import force_gatherable
from funasr.models.paraformer.search import Hypothesis
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
from funasr.models.paraformer.model import Paraformer
@tables.register("model_classes", "BiCifParaformer")
class BiCifParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
def _calc_pre2_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
_, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id)
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2)
return loss_pre2
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(encoder_out, ys_pad,
encoder_out_mask,
ignore_id=self.ignore_id)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
pre_acoustic_embeds)
else:
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
None,
encoder_out_mask,
ignore_id=self.ignore_id)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
encoder_out_mask,
token_num)
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# decoder: CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# decoder: Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss_pre2 = self._calc_pre2_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
else:
loss = self.ctc_weight * loss_ctc + (
1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss_pre2"] = loss_pre2.detach().cpu()
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + self.predictor_bias).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def generate(self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
if isinstance(data_in, torch.Tensor): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is None:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \
predictor_outs[2], predictor_outs[3]
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds,
pre_token_length)
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
# BiCifParaformer, test no bias cif2
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens,
pre_token_length)
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, :encoder_out_lens[i], :]
am_scores = decoder_out[i, :pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0)
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if ibest_writer is None and kwargs.get("output_dir") is not None:
writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
us_peaks[i][:encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0))
text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(
token, timestamp)
result_i = {"key": key[i], "text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
# ibest_writer["text"][key[i]] = text
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data

View File

@ -0,0 +1,340 @@
import logging
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import tempfile
import codecs
import requests
import re
import copy
import torch
import torch.nn as nn
import random
import numpy as np
import time
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr.metrics.compute_acc import th_accuracy
from funasr.train_utils.device_funcs import force_gatherable
from funasr.models.paraformer.search import Hypothesis
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
from funasr.models.paraformer.model import Paraformer
@tables.register("model_classes", "BiCifParaformer")
class BiCifParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paper1: FunASR: A Fundamental End-to-End Speech Recognition Toolkit
https://arxiv.org/abs/2305.11013
Paper2: Achieving timestamp prediction while recognizing with non-autoregressive end-to-end ASR model
https://arxiv.org/abs/2301.12343
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
def _calc_pre2_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
_, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id)
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2)
return loss_pre2
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index, _ = self.predictor(encoder_out, ys_pad,
encoder_out_mask,
ignore_id=self.ignore_id)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
pre_acoustic_embeds)
else:
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
None,
encoder_out_mask,
ignore_id=self.ignore_id)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
encoder_out_mask,
token_num)
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# decoder: CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# decoder: Attention decoder branch
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss_pre2 = self._calc_pre2_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
else:
loss = self.ctc_weight * loss_ctc + (
1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + loss_pre2 * self.predictor_weight * 0.5
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss_pre2"] = loss_pre2.detach().cpu()
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + self.predictor_bias).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def generate(self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
if isinstance(data_in, torch.Tensor): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is None:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = predictor_outs[0], predictor_outs[1], \
predictor_outs[2], predictor_outs[3]
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
decoder_outs = self.cal_decoder_with_predictor(encoder_out, encoder_out_lens, pre_acoustic_embeds,
pre_token_length)
decoder_out, ys_pad_lens = decoder_outs[0], decoder_outs[1]
# BiCifParaformer, test no bias cif2
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens,
pre_token_length)
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, :encoder_out_lens[i], :]
am_scores = decoder_out[i, :pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0)
)
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if ibest_writer is None and kwargs.get("output_dir") is not None:
writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
us_peaks[i][:encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0))
text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(
token, timestamp)
result_i = {"key": key[i], "text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
# ibest_writer["text"][key[i]] = text
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data

View File

@ -1,512 +1,534 @@
import os
import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import tempfile
import codecs
import requests
import re
import time
import copy
import torch
import torch.nn as nn
import random
import codecs
import logging
import tempfile
import requests
import numpy as np
import time
# from funasr.layers.abs_normalize import AbsNormalize
from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
from typing import Optional
from contextlib import contextmanager
from distutils.version import LooseVersion
from funasr.losses.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
LabelSmoothingLoss, # noqa: H301
)
# from funasr.models.ctc import CTC
# from funasr.models.decoder.abs_decoder import AbsDecoder
# from funasr.models.e2e_asr_common import ErrorCalculator
# from funasr.models.encoder.abs_encoder import AbsEncoder
# from funasr.frontends.abs_frontend import AbsFrontend
# from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr.models.paraformer.cif_predictor import mae_loss
# from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
# from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.metrics.compute_acc import th_accuracy
from funasr.train_utils.device_funcs import force_gatherable
# from funasr.models.base_model import FunASRModel
# from funasr.models.paraformer.cif_predictor import CifPredictorV3
from funasr.models.paraformer.search import Hypothesis
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.paraformer.model import Paraformer
from funasr.models.bicif_paraformer.model import BiCifParaformer
from funasr.register import tables
@tables.register("model_classes", "SeacoParaformer")
class SeacoParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability
https://arxiv.org/abs/2308.03266
"""
class SeacoParaformer(BiCifParaformer, Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability
https://arxiv.org/abs/2308.03266
"""
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
def __init__(
self,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.inner_dim = kwargs.get("inner_dim", 256)
self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm")
bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0)
bias_encoder_bid = kwargs.get("bias_encoder_bid", False)
seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0)
seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True)
self.inner_dim = kwargs.get("inner_dim", 256)
self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm")
bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0)
bias_encoder_bid = kwargs.get("bias_encoder_bid", False)
seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0)
seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True)
# bias encoder
if self.bias_encoder_type == 'lstm':
logging.warning("enable bias encoder sampling and contextual training")
self.bias_encoder = torch.nn.LSTM(self.inner_dim,
self.inner_dim,
2,
batch_first=True,
dropout=bias_encoder_dropout_rate,
bidirectional=bias_encoder_bid)
if bias_encoder_bid:
self.lstm_proj = torch.nn.Linear(self.inner_dim*2, self.inner_dim)
else:
self.lstm_proj = None
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
elif self.bias_encoder_type == 'mean':
logging.warning("enable bias encoder sampling and contextual training")
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
else:
logging.error("Unsupport bias encoder type: {}".format(self.bias_encoder_type))
# bias encoder
if self.bias_encoder_type == 'lstm':
logging.warning("enable bias encoder sampling and contextual training")
self.bias_encoder = torch.nn.LSTM(self.inner_dim,
self.inner_dim,
2,
batch_first=True,
dropout=bias_encoder_dropout_rate,
bidirectional=bias_encoder_bid)
if bias_encoder_bid:
self.lstm_proj = torch.nn.Linear(self.inner_dim*2, self.inner_dim)
else:
self.lstm_proj = None
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
elif self.bias_encoder_type == 'mean':
logging.warning("enable bias encoder sampling and contextual training")
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim)
else:
logging.error("Unsupport bias encoder type: {}".format(self.bias_encoder_type))
# seaco decoder
seaco_decoder = kwargs.get("seaco_decoder", None)
if seaco_decoder is not None:
seaco_decoder_conf = kwargs.get("seaco_decoder_conf")
seaco_decoder_class = tables.decoder_classes.get(seaco_decoder.lower())
self.seaco_decoder = seaco_decoder_class(
vocab_size=self.vocab_size,
encoder_output_size=self.inner_dim,
**seaco_decoder_conf,
)
self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size)
self.criterion_seaco = LabelSmoothingLoss(
size=self.vocab_size,
padding_idx=self.ignore_id,
smoothing=seaco_lsm_weight,
normalize_length=seaco_length_normalized_loss,
)
self.train_decoder = kwargs.get("train_decoder", False)
self.NO_BIAS = kwargs.get("NO_BIAS", 8377)
# seaco decoder
seaco_decoder = kwargs.get("seaco_decoder", None)
if seaco_decoder is not None:
seaco_decoder_conf = kwargs.get("seaco_decoder_conf")
seaco_decoder_class = tables.decoder_classes.get(seaco_decoder.lower())
self.seaco_decoder = seaco_decoder_class(
vocab_size=self.vocab_size,
encoder_output_size=self.inner_dim,
**seaco_decoder_conf,
)
self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size)
self.criterion_seaco = LabelSmoothingLoss(
size=self.vocab_size,
padding_idx=self.ignore_id,
smoothing=seaco_lsm_weight,
normalize_length=seaco_length_normalized_loss,
)
self.train_decoder = kwargs.get("train_decoder", False)
self.NO_BIAS = kwargs.get("NO_BIAS", 8377)
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
hotword_pad = kwargs.get("hotword_pad")
hotword_lengths = kwargs.get("hotword_lengths")
dha_pad = kwargs.get("dha_pad")
hotword_pad = kwargs.get("hotword_pad")
hotword_lengths = kwargs.get("hotword_lengths")
dha_pad = kwargs.get("dha_pad")
batch_size = speech.shape[0]
self.step_cur += 1
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, :speech_lengths.max()]
batch_size = speech.shape[0]
self.step_cur += 1
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, :speech_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id)
ys_lengths = text_lengths + self.predictor_bias
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id)
ys_lengths = text_lengths + self.predictor_bias
stats = dict()
loss_seaco = self._calc_seaco_loss(encoder_out,
encoder_out_lens,
ys_pad,
ys_lengths,
hotword_pad,
hotword_lengths,
dha_pad,
)
if self.train_decoder:
loss_att, acc_att = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss = loss_seaco + loss_att
stats["loss_att"] = torch.clone(loss_att.detach())
stats["acc_att"] = acc_att
else:
loss = loss_seaco
stats["loss_seaco"] = torch.clone(loss_seaco.detach())
stats["loss"] = torch.clone(loss.detach())
stats = dict()
loss_seaco = self._calc_seaco_loss(encoder_out,
encoder_out_lens,
ys_pad,
ys_lengths,
hotword_pad,
hotword_lengths,
dha_pad,
)
if self.train_decoder:
loss_att, acc_att = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss = loss_seaco + loss_att
stats["loss_att"] = torch.clone(loss_att.detach())
stats["acc_att"] = acc_att
else:
loss = loss_seaco
stats["loss_seaco"] = torch.clone(loss_seaco.detach())
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = (text_lengths + self.predictor_bias).sum().type_as(batch_size)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = (text_lengths + self.predictor_bias).sum().type_as(batch_size)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _merge(self, cif_attended, dec_attended):
return cif_attended + dec_attended
def _merge(self, cif_attended, dec_attended):
return cif_attended + dec_attended
def _calc_seaco_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_lengths: torch.Tensor,
hotword_pad: torch.Tensor,
hotword_lengths: torch.Tensor,
dha_pad: torch.Tensor,
):
# predictor forward
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, _, _, _ = self.predictor(encoder_out, ys_pad, encoder_out_mask,
ignore_id=self.ignore_id)
# decoder forward
decoder_out, _ = self.decoder(encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_lengths, return_hidden=True)
selected = self._hotword_representation(hotword_pad,
hotword_lengths)
contextual_info = selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
# dha core
cif_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_out, ys_lengths)
merged = self._merge(cif_attended, dec_attended)
dha_output = self.hotword_output_layer(merged[:, :-1]) # remove the last token in loss calculation
loss_att = self.criterion_seaco(dha_output, dha_pad)
return loss_att
def _calc_seaco_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_lengths: torch.Tensor,
hotword_pad: torch.Tensor,
hotword_lengths: torch.Tensor,
dha_pad: torch.Tensor,
):
# predictor forward
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, _, _, _ = self.predictor(encoder_out, ys_pad, encoder_out_mask,
ignore_id=self.ignore_id)
# decoder forward
decoder_out, _ = self.decoder(encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_lengths, return_hidden=True)
selected = self._hotword_representation(hotword_pad,
hotword_lengths)
contextual_info = selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
# dha core
cif_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_out, ys_lengths)
merged = self._merge(cif_attended, dec_attended)
dha_output = self.hotword_output_layer(merged[:, :-1]) # remove the last token in loss calculation
loss_att = self.criterion_seaco(dha_output, dha_pad)
return loss_att
def _seaco_decode_with_ASF(self,
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
hw_list,
nfilter=50,
seaco_weight=1.0):
# decoder forward
decoder_out, decoder_hidden, _ = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, return_hidden=True, return_both=True)
decoder_pred = torch.log_softmax(decoder_out, dim=-1)
if hw_list is not None:
hw_lengths = [len(i) for i in hw_list]
hw_list_ = [torch.Tensor(i).long() for i in hw_list]
hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device)
selected = self._hotword_representation(hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device))
contextual_info = selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
def _seaco_decode_with_ASF(self,
encoder_out,
encoder_out_lens,
sematic_embeds,
ys_pad_lens,
hw_list,
nfilter=50,
seaco_weight=1.0):
# decoder forward
decoder_out, decoder_hidden, _ = self.decoder(encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, return_hidden=True, return_both=True)
decoder_pred = torch.log_softmax(decoder_out, dim=-1)
if hw_list is not None:
hw_lengths = [len(i) for i in hw_list]
hw_list_ = [torch.Tensor(i).long() for i in hw_list]
hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device)
selected = self._hotword_representation(hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device))
contextual_info = selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
# ASF Core
if nfilter > 0 and nfilter < num_hot_word:
for dec in self.seaco_decoder.decoders:
dec.reserve_attn = True
# cif_attended, _ = self.decoder2(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_hidden, ys_pad_lens)
# cif_filter = torch.topk(self.decoder2.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1], min(nfilter, num_hot_word-1))[1].tolist()
hotword_scores = self.seaco_decoder.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1]
# hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device)
dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word-1))[1].tolist()
add_filter = dec_filter
add_filter.append(len(hw_list_pad)-1)
# filter hotword embedding
selected = selected[add_filter]
# again
contextual_info = selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
for dec in self.seaco_decoder.decoders:
dec.attn_mat = []
dec.reserve_attn = False
# ASF Core
if nfilter > 0 and nfilter < num_hot_word:
for dec in self.seaco_decoder.decoders:
dec.reserve_attn = True
# cif_attended, _ = self.decoder2(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_hidden, ys_pad_lens)
# cif_filter = torch.topk(self.decoder2.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1], min(nfilter, num_hot_word-1))[1].tolist()
hotword_scores = self.seaco_decoder.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1]
# hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device)
dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word-1))[1].tolist()
add_filter = dec_filter
add_filter.append(len(hw_list_pad)-1)
# filter hotword embedding
selected = selected[add_filter]
# again
contextual_info = selected.squeeze(0).repeat(encoder_out.shape[0], 1, 1).to(encoder_out.device)
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(encoder_out.shape[0]).to(encoder_out.device)
for dec in self.seaco_decoder.decoders:
dec.attn_mat = []
dec.reserve_attn = False
# SeACo Core
cif_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_hidden, ys_pad_lens)
merged = self._merge(cif_attended, dec_attended)
# SeACo Core
cif_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_hidden, ys_pad_lens)
merged = self._merge(cif_attended, dec_attended)
dha_output = self.hotword_output_layer(merged) # remove the last token in loss calculation
dha_pred = torch.log_softmax(dha_output, dim=-1)
# import pdb; pdb.set_trace()
def _merge_res(dec_output, dha_output):
lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0])
dha_ids = dha_output.max(-1)[-1][0]
dha_mask = (dha_ids == 8377).int().unsqueeze(-1)
a = (1 - lmbd) / lmbd
b = 1 / lmbd
a, b = a.to(dec_output.device), b.to(dec_output.device)
dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1)
# logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask)
logits = dec_output * dha_mask + dha_output[:,:,:] * (1-dha_mask)
return logits
merged_pred = _merge_res(decoder_pred, dha_pred)
return merged_pred
else:
return decoder_pred
dha_output = self.hotword_output_layer(merged) # remove the last token in loss calculation
dha_pred = torch.log_softmax(dha_output, dim=-1)
# import pdb; pdb.set_trace()
def _merge_res(dec_output, dha_output):
lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0])
dha_ids = dha_output.max(-1)[-1][0]
dha_mask = (dha_ids == 8377).int().unsqueeze(-1)
a = (1 - lmbd) / lmbd
b = 1 / lmbd
a, b = a.to(dec_output.device), b.to(dec_output.device)
dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1)
# logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask)
logits = dec_output * dha_mask + dha_output[:,:,:] * (1-dha_mask)
return logits
merged_pred = _merge_res(decoder_pred, dha_pred)
return merged_pred
else:
return decoder_pred
def _hotword_representation(self,
hotword_pad,
hotword_lengths):
if self.bias_encoder_type != 'lstm':
logging.error("Unsupported bias encoder type")
hw_embed = self.decoder.embed(hotword_pad)
hw_embed, (_, _) = self.bias_encoder(hw_embed)
if self.lstm_proj is not None:
hw_embed = self.lstm_proj(hw_embed)
_ind = np.arange(0, hw_embed.shape[0]).tolist()
selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]]
return selected
def _hotword_representation(self,
hotword_pad,
hotword_lengths):
if self.bias_encoder_type != 'lstm':
logging.error("Unsupported bias encoder type")
hw_embed = self.decoder.embed(hotword_pad)
hw_embed, (_, _) = self.bias_encoder(hw_embed)
if self.lstm_proj is not None:
hw_embed = self.lstm_proj(hw_embed)
_ind = np.arange(0, hw_embed.shape[0]).tolist()
selected = hw_embed[_ind, [i-1 for i in hotword_lengths.detach().cpu().tolist()]]
return selected
def generate(self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data[
"batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"])
# hotword
self.hotword_list = self.generate_hotwords_list(kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend)
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, _, _ = predictor_outs[0], predictor_outs[1], \
predictor_outs[2], predictor_outs[3]
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
'''
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out,
None,
encoder_out_mask,
ignore_id=self.ignore_id)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
decoder_out = self._seaco_decode_with_ASF(encoder_out, encoder_out_lens,
pre_acoustic_embeds,
pre_token_length,
hw_list=self.hotword_list)
# decoder_out, _ = decoder_outs[0], decoder_outs[1]
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out,
encoder_out_mask,
token_num)
return ds_alphas, ds_cif_peak, us_alphas, us_peaks
'''
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, :encoder_out_lens[i], :]
am_scores = decoder_out[i, :pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0)
)
def generate(self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
nbest_hyps = nbest_hyps[: self.nbest]
else:
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if ibest_writer is None and kwargs.get("output_dir") is not None:
writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
meta_data = {}
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio(data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data[
"batch_data_time"] = speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
speech.to(device=kwargs["device"]), speech_lengths.to(device=kwargs["device"])
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed}
# hotword
self.hotword_list = self.generate_hotwords_list(kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend)
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
return results, meta_data
# predictor
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens)
pre_acoustic_embeds, pre_token_length, _, _ = predictor_outs[0], predictor_outs[1], \
predictor_outs[2], predictor_outs[3]
pre_token_length = pre_token_length.round().long()
if torch.max(pre_token_length) < 1:
return []
def generate_hotwords_list(self, hotword_list_or_file, tokenizer=None, frontend=None):
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
decoder_out = self._seaco_decode_with_ASF(encoder_out, encoder_out_lens,
pre_acoustic_embeds,
pre_token_length,
hw_list=self.hotword_list)
# decoder_out, _ = decoder_outs[0], decoder_outs[1]
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp(encoder_out, encoder_out_lens,
pre_token_length)
def seg_tokenize(txt, seg_dict):
pattern = re.compile(r'^[\u4E00-\u9FA50-9]+$')
out_txt = ""
for word in txt:
word = word.lower()
if word in seg_dict:
out_txt += seg_dict[word] + " "
else:
if pattern.match(word):
for char in word:
if char in seg_dict:
out_txt += seg_dict[char] + " "
else:
out_txt += "<unk>" + " "
else:
out_txt += "<unk>" + " "
return out_txt.strip().split()
results = []
b, n, d = decoder_out.size()
for i in range(b):
x = encoder_out[i, :encoder_out_lens[i], :]
am_scores = decoder_out[i, :pre_token_length[i], :]
if self.beam_search is not None:
nbest_hyps = self.beam_search(
x=x, am_scores=am_scores, maxlenratio=kwargs.get("maxlenratio", 0.0),
minlenratio=kwargs.get("minlenratio", 0.0)
)
seg_dict = None
if frontend.cmvn_file is not None:
model_dir = os.path.dirname(frontend.cmvn_file)
seg_dict_file = os.path.join(model_dir, 'seg_dict')
if os.path.exists(seg_dict_file):
seg_dict = load_seg_dict(seg_dict_file)
else:
seg_dict = None
# for None
if hotword_list_or_file is None:
hotword_list = None
# for local txt inputs
elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith('.txt'):
logging.info("Attempting to parse hotwords from local txt...")
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, 'r') as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append('<s>')
logging.info("Initialized hotword list from file: {}, hotword list: {}."
.format(hotword_list_or_file, hotword_str_list))
# for url, download and generate txt
elif hotword_list_or_file.startswith('http'):
logging.info("Attempting to parse hotwords from url...")
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
text_file_path = os.path.join(work_dir, os.path.basename(hotword_list_or_file))
local_file = requests.get(hotword_list_or_file)
open(text_file_path, "wb").write(local_file.content)
hotword_list_or_file = text_file_path
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, 'r') as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append('<s>')
logging.info("Initialized hotword list from file: {}, hotword list: {}."
.format(hotword_list_or_file, hotword_str_list))
# for text str input
elif not hotword_list_or_file.endswith('.txt'):
logging.info("Attempting to parse hotwords as str...")
hotword_list = []
hotword_str_list = []
for hw in hotword_list_or_file.strip().split():
hotword_str_list.append(hw)
hw_list = hw.strip().split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append('<s>')
logging.info("Hotword list: {}.".format(hotword_str_list))
else:
hotword_list = None
return hotword_list
nbest_hyps = nbest_hyps[: self.nbest]
else:
yseq = am_scores.argmax(dim=-1)
score = am_scores.max(dim=-1)[0]
score = torch.sum(score, dim=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
yseq = torch.tensor(
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device
)
nbest_hyps = [Hypothesis(yseq=yseq, score=score)]
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if ibest_writer is None and kwargs.get("output_dir") is not None:
writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = writer[f"{nbest_idx + 1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(
filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
if tokenizer is not None:
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i][:encoder_out_lens[i] * 3],
us_peaks[i][:encoder_out_lens[i] * 3],
copy.copy(token),
vad_offset=kwargs.get("begin_time", 0))
text_postprocessed, time_stamp_postprocessed, word_lists = postprocess_utils.sentence_postprocess(
token, timestamp)
result_i = {"key": key[i], "text": text_postprocessed,
"timestamp": time_stamp_postprocessed,
}
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
# ibest_writer["text"][key[i]] = text
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed
ibest_writer["text"][key[i]] = text_postprocessed
else:
result_i = {"key": key[i], "token_int": token_int}
results.append(result_i)
return results, meta_data
def generate_hotwords_list(self, hotword_list_or_file, tokenizer=None, frontend=None):
def load_seg_dict(seg_dict_file):
seg_dict = {}
assert isinstance(seg_dict_file, str)
with open(seg_dict_file, "r", encoding="utf8") as f:
lines = f.readlines()
for line in lines:
s = line.strip().split()
key = s[0]
value = s[1:]
seg_dict[key] = " ".join(value)
return seg_dict
def seg_tokenize(txt, seg_dict):
pattern = re.compile(r'^[\u4E00-\u9FA50-9]+$')
out_txt = ""
for word in txt:
word = word.lower()
if word in seg_dict:
out_txt += seg_dict[word] + " "
else:
if pattern.match(word):
for char in word:
if char in seg_dict:
out_txt += seg_dict[char] + " "
else:
out_txt += "<unk>" + " "
else:
out_txt += "<unk>" + " "
return out_txt.strip().split()
seg_dict = None
if frontend.cmvn_file is not None:
model_dir = os.path.dirname(frontend.cmvn_file)
seg_dict_file = os.path.join(model_dir, 'seg_dict')
if os.path.exists(seg_dict_file):
seg_dict = load_seg_dict(seg_dict_file)
else:
seg_dict = None
# for None
if hotword_list_or_file is None:
hotword_list = None
# for local txt inputs
elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith('.txt'):
logging.info("Attempting to parse hotwords from local txt...")
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, 'r') as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append('<s>')
logging.info("Initialized hotword list from file: {}, hotword list: {}."
.format(hotword_list_or_file, hotword_str_list))
# for url, download and generate txt
elif hotword_list_or_file.startswith('http'):
logging.info("Attempting to parse hotwords from url...")
work_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(work_dir):
os.makedirs(work_dir)
text_file_path = os.path.join(work_dir, os.path.basename(hotword_list_or_file))
local_file = requests.get(hotword_list_or_file)
open(text_file_path, "wb").write(local_file.content)
hotword_list_or_file = text_file_path
hotword_list = []
hotword_str_list = []
with codecs.open(hotword_list_or_file, 'r') as fin:
for line in fin.readlines():
hw = line.strip()
hw_list = hw.split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_str_list.append(hw)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append('<s>')
logging.info("Initialized hotword list from file: {}, hotword list: {}."
.format(hotword_list_or_file, hotword_str_list))
# for text str input
elif not hotword_list_or_file.endswith('.txt'):
logging.info("Attempting to parse hotwords as str...")
hotword_list = []
hotword_str_list = []
for hw in hotword_list_or_file.strip().split():
hotword_str_list.append(hw)
hw_list = hw.strip().split()
if seg_dict is not None:
hw_list = seg_tokenize(hw_list, seg_dict)
hotword_list.append(tokenizer.tokens2ids(hw_list))
hotword_list.append([self.sos])
hotword_str_list.append('<s>')
logging.info("Hotword list: {}.".format(hotword_str_list))
else:
hotword_list = None
return hotword_list