mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update repo
This commit is contained in:
parent
167bab54bb
commit
3c3754dcc7
@ -12,7 +12,7 @@ cd egs/aishell/paraformer
|
|||||||
Then you can directly start the recipe as follows:
|
Then you can directly start the recipe as follows:
|
||||||
```sh
|
```sh
|
||||||
conda activate funasr
|
conda activate funasr
|
||||||
. ./run.sh
|
. ./run.sh --CUDA_VISIBLE_DEVICES="0,1" --gpu_num=2
|
||||||
```
|
```
|
||||||
|
|
||||||
The training log files are saved in `${exp_dir}/exp/${model_dir}/log/train.log.*`, which can be viewed using the following command:
|
The training log files are saved in `${exp_dir}/exp/${model_dir}/log/train.log.*`, which can be viewed using the following command:
|
||||||
@ -26,16 +26,16 @@ Users can observe the training loss, prediction accuracy and other training info
|
|||||||
... 1epoch:train:801-850batch:850num_updates: ... loss_ctc=107.890, loss_att=87.832, acc=0.029, loss_pre=1.702 ...
|
... 1epoch:train:801-850batch:850num_updates: ... loss_ctc=107.890, loss_att=87.832, acc=0.029, loss_pre=1.702 ...
|
||||||
```
|
```
|
||||||
|
|
||||||
Also, users can use tensorboard to observe these training information by the following command:
|
|
||||||
```sh
|
|
||||||
tensorboard --logdir ${exp_dir}/exp/${model_dir}/tensorboard/train
|
|
||||||
```
|
|
||||||
|
|
||||||
At the end of each epoch, the evaluation metrics are calculated on the validation set, like follows:
|
At the end of each epoch, the evaluation metrics are calculated on the validation set, like follows:
|
||||||
```text
|
```text
|
||||||
... [valid] loss_ctc=99.914, cer_ctc=1.000, loss_att=80.512, acc=0.029, cer=0.971, wer=1.000, loss_pre=1.952, loss=88.285 ...
|
... [valid] loss_ctc=99.914, cer_ctc=1.000, loss_att=80.512, acc=0.029, cer=0.971, wer=1.000, loss_pre=1.952, loss=88.285 ...
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Also, users can use tensorboard to observe these training information by the following command:
|
||||||
|
```sh
|
||||||
|
tensorboard --logdir ${exp_dir}/exp/${model_dir}/tensorboard/train
|
||||||
|
```
|
||||||
|
|
||||||
The inference results are saved in `${exp_dir}/exp/${model_dir}/decode_asr_*/$dset`. The main two files are `text.cer` and `text.cer.txt`. `text.cer` saves the comparison between the recognized text and the reference text, like follows:
|
The inference results are saved in `${exp_dir}/exp/${model_dir}/decode_asr_*/$dset`. The main two files are `text.cer` and `text.cer.txt`. `text.cer` saves the comparison between the recognized text and the reference text, like follows:
|
||||||
```text
|
```text
|
||||||
...
|
...
|
||||||
|
|||||||
@ -120,7 +120,7 @@ fi
|
|||||||
|
|
||||||
# ASR Training Stage
|
# ASR Training Stage
|
||||||
world_size=$gpu_num # run on one machine
|
world_size=$gpu_num # run on one machine
|
||||||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4; then
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||||
echo "stage 4: ASR Training"
|
echo "stage 4: ASR Training"
|
||||||
mkdir -p ${exp_dir}/exp/${model_dir}
|
mkdir -p ${exp_dir}/exp/${model_dir}
|
||||||
mkdir -p ${exp_dir}/exp/${model_dir}/log
|
mkdir -p ${exp_dir}/exp/${model_dir}/log
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user