mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
Merge pull request #309 from alibaba-damo-academy/dev_lzr
fix contextualparaformer bias_embed
This commit is contained in:
commit
3852f61795
@ -1085,6 +1085,7 @@ class ContextualParaformer(Paraformer):
|
||||
inner_dim: int = 256,
|
||||
bias_encoder_type: str = 'lstm',
|
||||
label_bracket: bool = False,
|
||||
use_decoder_embedding: bool = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
|
||||
@ -1138,6 +1139,7 @@ class ContextualParaformer(Paraformer):
|
||||
self.hotword_buffer = None
|
||||
self.length_record = []
|
||||
self.current_buffer_length = 0
|
||||
self.use_decoder_embedding = use_decoder_embedding
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -1279,7 +1281,10 @@ class ContextualParaformer(Paraformer):
|
||||
hw_list.append(hw_tokens)
|
||||
# padding
|
||||
hw_list_pad = pad_list(hw_list, 0)
|
||||
hw_embed = self.decoder.embed(hw_list_pad)
|
||||
if self.use_decoder_embedding:
|
||||
hw_embed = self.decoder.embed(hw_list_pad)
|
||||
else:
|
||||
hw_embed = self.bias_embed(hw_list_pad)
|
||||
hw_embed, (_, _) = self.bias_encoder(hw_embed)
|
||||
_ind = np.arange(0, len(hw_list)).tolist()
|
||||
# update self.hotword_buffer, throw a part if oversize
|
||||
@ -1395,13 +1400,19 @@ class ContextualParaformer(Paraformer):
|
||||
# default hotword list
|
||||
hw_list = [torch.Tensor([self.sos]).long().to(encoder_out.device)] # empty hotword list
|
||||
hw_list_pad = pad_list(hw_list, 0)
|
||||
hw_embed = self.bias_embed(hw_list_pad)
|
||||
if self.use_decoder_embedding:
|
||||
hw_embed = self.decoder.embed(hw_list_pad)
|
||||
else:
|
||||
hw_embed = self.bias_embed(hw_list_pad)
|
||||
_, (h_n, _) = self.bias_encoder(hw_embed)
|
||||
contextual_info = h_n.squeeze(0).repeat(encoder_out.shape[0], 1, 1)
|
||||
else:
|
||||
hw_lengths = [len(i) for i in hw_list]
|
||||
hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to(encoder_out.device)
|
||||
hw_embed = self.bias_embed(hw_list_pad)
|
||||
if self.use_decoder_embedding:
|
||||
hw_embed = self.decoder.embed(hw_list_pad)
|
||||
else:
|
||||
hw_embed = self.bias_embed(hw_list_pad)
|
||||
hw_embed = torch.nn.utils.rnn.pack_padded_sequence(hw_embed, hw_lengths, batch_first=True,
|
||||
enforce_sorted=False)
|
||||
_, (h_n, _) = self.bias_encoder(hw_embed)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user