add batch interval for saving model

This commit is contained in:
nichongjia-2007 2023-03-23 18:33:21 +08:00
parent 1c318519b2
commit 37c45ee8d7
2 changed files with 31 additions and 5 deletions

View File

@ -412,6 +412,12 @@ class ASRTask(AbsTask):
default="13_15",
help="The range of noise decibel level.",
)
parser.add_argument(
"--batch_interval",
type=int,
default=10000,
help="The batch interval for saving model.",
)
for class_choices in cls.class_choices_list:
# Append --<name> and --<name>_conf.

View File

@ -94,7 +94,7 @@ class TrainerOptions:
wandb_model_log_interval: int
use_pai: bool
oss_bucket: Union[oss2.Bucket, None]
batch_interval: int
class Trainer:
"""Trainer having a optimizer.
@ -186,7 +186,10 @@ class Trainer:
logging.warning("No keep_nbest_models is given. Change to [1]")
trainer_options.keep_nbest_models = [1]
keep_nbest_models = trainer_options.keep_nbest_models
#assert batch_interval is set and >0
assert trainer_options.batch_interval > 0
output_dir = Path(trainer_options.output_dir)
reporter = Reporter()
if trainer_options.use_amp:
@ -560,13 +563,30 @@ class Trainer:
# [For distributed] Because iteration counts are not always equals between
# processes, send stop-flag to the other processes if iterator is finished
iterator_stop = torch.tensor(0).to("cuda" if ngpu > 0 else "cpu")
#get the rank
rank = distributed_option.dist_rank
#get the num batch updates
num_batch_updates = 0
#ouput dir
output_dir = Path(options.output_dir)
#batch interval
batch_interval = options.batch_interval
assert batch_interval > 0
start_time = time.perf_counter()
for iiter, (_, batch) in enumerate(
reporter.measure_iter_time(iterator, "iter_time"), 1
):
assert isinstance(batch, dict), type(batch)
if rank == 0 and hasattr(model.module, "num_updates"):
num_batch_updates = model.module.get_num_updates()
if (num_batch_updates%batch_interval == 0) and (options.oss_bucket is not None) and options.use_pai:
buffer = BytesIO()
torch.save(model.state_dict(), buffer)
options.oss_bucket.put_object(os.path.join(output_dir, f"{num_batch_updates}batch.pth"), buffer.getvalue())
if distributed:
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)
if iterator_stop > 0:
@ -811,4 +831,4 @@ class Trainer:
else:
if distributed:
iterator_stop.fill_(1)
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)